Hasso-Plattner-Institut Potsdam Software Architecture Group http://www.hpi.uni-potsdam.de/swa Marko Röder WS 2011/2012

Motivation

- The huge number of PCs in the world (> 1 billion) [Gartner] + the ever-growing number of other computing devices
- Supply computing power to science
 - ➡ What does your computer do at night?
- Enable scientific research that could not be done otherwise
- In contrast: supercomputers
 - Extremely expensive
 - Available only for applications that can afford them
- ➡ (Desktop) Grid Computing / Volunteer Computing

What is Grid Computing?

- Term is taken from grids: power grid, water system
 - Standard, reliable, and low cost access to associated transmission and distribution technologies
- Vision: a comparable network for computer systems

 - Ubiquitous access to computational resources
 - Cheap and widely available computing power
- Never got to work as expected -> buzzword/marketing

"A computational grid is a **hardware** and **software** infrastucture that provides dependable, consistent, pervasive, and inexpensive **access to high-end computational capabilities**"

-- Ian Foster, Carl Kesselman

 $|\langle || x || \rangle || 4$

Types of Grids

Computing grid

- Accumulates computing power of different computers
- Supplies this power to problems that need a lot of (CPU) time
- Applications: weather prediction

➡ left to Grid Computing

Database grid

- Unified access large datasets (that cannot be handle on one machine)
- Queries get distributed and "the grid" collects answers
- Applications: single distributed or federated database systems

➡ Web services / SOA

Resource grid

- Provide resources for temporary or permanent usage
- Applications: distribute storage
- Cloud Computing

[1][5]

Parameter Tests

- Scientific simulation of complex systems (e.g.physics, chemistry)
 Intensive calculations
- Example: Computer-Aided Drug Discovery

Map/Reduce

- (Storage and) Processing of large data sets
 - Storing huge quantities of data and executing calculations
- Examples: Medical images, LHC

[5]

Basic requirement

Application is divisible into a large number of independent jobs

Abstract execution model of parallel applications

How does it work? What do we need?

- 1. A work generator (factory) creates the job*
- 2. Input (files) is associated
- 3. Multiple instances (tasks/work units) of the job are created
- 4. Server (registry) dispatches the instances to different hosts
- 5. Each worker downloads its input files
- 6. The worker executes the job
- 7. The worker reports the job as completed & uploads results
- 8. A validator* checks the output files
- 9. An **assimilator*** handles the results

* A program the user should supply

Simple setup

Software Architecture Group (www.hpi.uni-potsdam.de/swa) 2006-present

Software Design – Grid Computing HPI Steps 1-3: Create a job, define input & tasks **Examples:** Square Primes Zero of a function function square(a) { function isPrime(n) { function zero(x) { return a * a: if (isNaN(n) || !isFinite(n) || n%1 || n<2) return (Math.pow(x, 4) + Math.pow(x, 3) return false: $4^{*}Math.pow(x, 2) - 4^{*}x) == 0;$ var m = Math.sqrt(n); 3 for (var i = 2; i <= m; i++) if (n % i == 0) return false; return true; } Μ – X GridFactory (+) (-) (C (re)set data browse results

Steps 4-7: Dispatch, download, work & return

Steps 8-9: Validate & consolidate

Validate: Do it again! (one step back, ...)

Consolidate:

HPI

Examples

Great Internet Mersenne Prime Search (http://www.mersenne.org/)

- Formed in January 1996 (first volunteering project)
- Finding world record primes
- Mersenne primes are primes of the form 2^p-1 (only 46 known)

BOINC (http://boinc.berkeley.edu/)

- General-purpose grid computing solution
- For scientists (create a project), universities (virtual campus supercomputing), companies (desktop grid computing)
- Example: World Community Grid

Globus Toolkit (http://www.globus.org/)

- Standard (reference implementation) started in 1995
- Middleware technology to support and ease Grid Computing
- Aimed at high performance scientific computing

Others: distributed.net, SETI, Worldwide LHC Computing Grid

Software Architecture Group (www.hpi.uni-potsdam.de/swa) 2006-present

Concerns & Criticism

Projects perspective

- How can (all) challenges be described Grid Computing tasks?
 - ➡ Many, many jobs and an abstract problem
- What is if a volunteer misbehaves in some way?
 - ► Volunteers are anonymous and therefore not accountable

Volunteers perspective

- Can those task do damage my computer or invade my privacy?
 Security considerations, sandboxing, ...
- How is my work being used? (Truthfulness / Intellectual property)
 - ➡ Can hackers use it as a vehicle for malicious activities?

References

- [1] DUNKEL, J. et al.: Systemarchitekturen für verteilte Anwendungen. Hanser Verlag, First edition, 2008.
- [2] FOSTER, I., KESSELMAN, C.: The Grid: Blueprint for a New Computing Infrastucture. Morgan Kaufmann, First edition, 1998.
- [3] FOSTER, I., et al.: The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. OGSI WG Global Grid Forum 22, 2002.
- [4] PRODAN, R., FAHRINGER, T.: Grid Computing: Experiment Management, Tool Integration, and Scientific Workflows. LNCS Volume 4340, 2007.
- [5] FERREIRA L., et al.: Grid Computing in Research and Education. IBM Redbooks, First edition, April 2005.

Web Resources

http://www.gartner.com/it/page.jsp?id=703807

http://boinc.berkeley.edu/ http://www.gridforum.org/ http://www.mersenne.org/ http://www.globus.org/ogsa

Bonus: Related technologies

Parallel Computing / Clusters

- Consumes more than a gigabyte of data per day of CPU time
- Large data, expensive and/or slow to send over internet

Service-oriented Architectures (SOA) / Web Services

- Aggregation of portable an reusable programs called services
- Can be accessed by remote clients over network
- Language and platform independent

Peer-to-peer Architectures (P2P)

- Aggregation of equivalent programs called *peers*
- Provide functionality and share part of their hardware resources without the involvement of a central server
- Benefits the participants, no notion of a 'project'
- High degree of scalability and fault tolerance

Cloud Computing

Software Architecture Group (www.hpi.uni-potsdam.de/swa) 2006-present

Bonus: Open Grid Service Architecture (OGSA)

Open Grid Services Architecture

- Official specification of the Global Grid Form (GGF)
 - Current version: 1.5 (from September 5, 2006)
 - http://www.globus.org/ogsa
- First prototype Grid service implementation January 29, 2002
- Globus Toolkit 3.0 and 3.2 offered an OGSA implementation
- Globus Toolkit 4.0 provides a OGSA capabilities based on WSRF
 Open source, community-driven software project

 $\langle X \rangle$ 18

HPI