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2.3. Change Detection and Reaction as Coarse-grained, Unified Model for Reactive Programmin gl

ing these properties. In that, cp shares many parallels with reactive programming. Con-
sequently, we consider interactive CP systems being reactive in this thesis. Interestingly,
integrations of CP systems into 00 host languages became more and more sophisticated
over the years, culminating in Babelsberg. Babelsberg makes cp more accessible to oo
developers by reducing the knowledge on cp required. To do so, Babelsberg allows de-
velopers to make full use of familiar 0o concepts to describe constraints and reduces the
configuration overhead by following the convention over configuration principle.

A large landscape of varied concepts, working principles, and systems emerged from the
basic idea of reactivity. In particular, systems differ in their applied data structures, de-
pendency creation process, change triggers, type of reactive behavior, and consistency
guarantees. Note, that the presented concepts and systems are only a selection of the
available design space. The general notion of reactive programming spans multiple dis-
tinct areas of research and research communities from difterent backgrounds, each with
their own perspectives, values, and application domains. Consequently, even when we en-
counter recurring concepts, such as events, behaviors, or constraints, they are interpreted
in a slightly but distinctly different manner. Thus, even when different reactive program-
ming concepts can solve similar problems, they are not arbitrarily exchangeable linguistic
tools. Instead, the concepts we use influence our perception of and reasoning about the

problem at hand.

2.3. Change Detection and Reaction as Coarse-grained, Unified
Model for Reactive Programming

To support the development of a wide range of reactive programming concepts, active
expressions require us to identify some commonality among reactive programming con-
cepts to leverage for reuse. Unfortunately, reusable mechanisms are hard to come by given
the diverse nature of reactive behavior introduced in Section 2.2. Even worse, many con-
crete implementations of reactive programming concepts are rather monolithic in order
to maximize ease of use and performance. As a result, reactive programming concepts are
not designed for reuse with missing extension points making it hard to chop a reactive
programming concept into pluggable blocks.

Despite these rigid characteristics, some researchers acknowledge the diversity of reac-
tive programming concepts and made attempts towards a common taxonomy that spans
multiple reactive programming families. For example, Margara and Salvaneschi provide
a five step model (observation, notification, processing, propagation, and reaction) for
signal systems and CEP [154]. However, because this taxonomy is designed to support sig-
nal systems and CEP in particular, it is too narrow to be directly applicable to all reactive
programming concepts. To be precise, simple reactive programming concepts skip some
steps entirely, e.g. a one-way data binding skips the processing step, while complex ones
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Figure 2.11.: Reactive programming propagates change from one part of the system to
another.

do not strictly follow the model, e.g. Wallingford would require two such processes, one
for time advancement and one value queries, each with different properties. Furthermore,
as the taxonomy is intended for conceptual comparison, it does not present its steps as
pluggable extension points for behavior variations®

Given the vast variety of reactive behavior, it is hard to find common model that covers
most reactive programming concepts well. The more fine-grained a model the more sparse
is its feature matrix and the higher the chance to encounter a system that challenges the
model’s fundamental assumptions in unique and unexpected ways as illustrated above.

Rather than introducing such a fine-grained model, we aim for a simpler and overall
more inclusive approach: instead of dissecting highly different behaviors into buckets of
common steps, we acknowledge their incompatibility. To still attain a common perspec-
tive on reactive programming, we abstract this variety out of the formula. That means, we
handle the type of reactive behavior executed as a single (big) variation point. To continue
our reasoning, if these varying behaviors are not essential to reactivity itself, what remains
is at the very heart of reactive programming: the very concept of change, its detection and
propagation. To elaborate, we argue that the notion of reactivity is not about any kind
of reactive behavior itself, but about this bebavior being executed. Following our defini-
tion of reactive programming from Section 2.1, which states that reactive programming
establishes an ongoing connection between multiple parts of a program, we see reactive
programming as a glue paradigm. Rather than enforcing a particular execution model,
reactive programming connects execution in one paradigm (the host) to another (the reac-
tion) via the propagation of change as depicted in Figure 2.11 [234]. During execution of
the host, some interesting change happens, a reactive programming runtime detects this
change and propagates it to interested parties, ultimately, entailing some form of reaction.
Given these considerations, reactive programming concepts adopt a two part structure of
with the first part handling change detection and the second handling the reactive behavior
itself. For this thesis, we focus on 00 imperative programming as the primary paradigm of
the host language. The second part’s paradigm may or may not coincide with the first one.

8Section 7.1 compares this taxonomy with ours in more depth.
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2. The Structure and I ntegration of Reactive Programming Concepts
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Figure 2.12.: Different types of sources (left) of and reactions (right) to change are tied
together by their shared understading of the concept of change.

This perspective on reactive programming also explains the perceived variety of reactive
programming as reactions may come from any programming paradigm. For example,

* interactive constraint systems solve given constraints,
* implicit invocation systems call multiple imperative procedures, and
* signal systems update the values in their DAG.

While being diverse, one quality most reactions have in common is that they execute
behavior with respect to the change that triggered them. To expand our examples, consider
that

* constraints are not simply solved but incorporate a temporary assignment constraint to
account for the change,

* procedures are called with arguments specific to the change, and

* signal systems only need to update the part of their DAG that is affected by the change.

Not only the reaction to change presents a variation point for reactive programming
concepts but source of a change may vary as well. Examples for such sources include state
modifications, event emissions, new data, or elapsed time. As depicted in Figure 2.12, all
these sources lead to some form of change that is then propagated.

Various combinations of source types and reactions are possible. For example, many
libraries for interactive constraint solving require an explicit notification on constraint
violations while ocp infers these violations implicitly from state modifications in the un-
derlying runtime. Nevertheless, both variants result in some form of change propagation
through constraint solving. Similar, a single source of a change may trigger different update
mechanisms. For example, an event emission might trigger imperative computation in an
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implicit invocation system, cause instantaneous changes in a continuous time system, or
the next iteration in a synchronous dataflow graph.

2.4. Selected Dimensions of Reactive Programming Concepts

Given the two-part structure for reactive programming concepts identified in the previous
section, we investigate individual property dimensions of these parts to further improve
our understanding of potentially reusable components. To be specific, we highlight three
selected dimensions of reactive programming concepts, namely the type of change no-
tification, how cascading reactive behavior is handled, and the embedding of reactive
programming into the host language. We selected these dimensions in particular, as they
provide design perimeters for a reusable component, either by narrowing down design
space because we see one specific approach in the dimension as desirable or by illustrating
the range of a dimension that we have to account for.

2.4.1. Explicit and Implicit Change Notification

In the previous section, we briefly highlighted various sources of change, such as state
manipulation and event emission. One dimension of reactive programming concepts
regards whether change is explicitly or implicitly detected. To be specific, this dimension
specifies who is responsible for detecting and notifying about a change, the reactive system
or the developer. We can easily distinguish these two cases by checking the source code:
explicit change notifications are manifested in source code while implicit ones are not.

Explicit Change Notification  To illustrate the difference, consider the following example
of an explicit change notification for a state manipulation as often seen in the observer
pattern:

thisx =5
this.notify()

The first line handles the actual state manipulation in the host language. The second line
contains the explicit change notification, an instruction 7z the source code with the sole
purpose of signaling a change in the program to the reactive programming system, thus,
instructing it to respond to and propagate the change. For explicit change notification
to be used, the change has to be detected previously by other means. In our example, the
application developer simply knows about the change in the previous line and uses a dedi-
cated statement for notification purpose only to inform the reactive programming system
about it. Some sources of change lend themselves well to explicit notification, including
event emission in a publish-subscribe system (emit('drag', { x: 50, y: 50 })) or pushing new
values into a dataflow stream (subscriber.next(s2)).

Implicit Change Notification Implementing the same example with an smplicit change
notification results in the following code:
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