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Abstract
Adapting and developing software tools, to fit them to the task at handwhile
being used, is the domain of end-user development (EUD). Unlike EUD,
the programming tools of a general-purpose development environment
cannot usually be adapted in a live and interactive way. However, there
are exceptions. The combined development and run-time environments of
languages, such as Lisp and Smalltalk, allow modifying applications, but
also adapting the development environments themselves at run-time. This
self-supporting development approach shortens feedback loops andmakes the
development style interactive and explorative. Lively Kernel is a Smalltalk-
like self-supporting development environment in the Web-browser, which
allows Web-applications to be developed in such a lively way. Since the
environment is shared, the feedback cycles among collaborating users are
also shortened. Therefore, a Lively Kernel-based wiki allows the develop-
ment, sharing, and reuse of each other’s creations in an environment which
evolves while being used.
Because of computational reflection and meta-circularity, developing in

a self-supporting environment inherently has the danger of breaking one’s
own tools, which is more severe in a shared environment since changes can
and often do affect more than a single user. Therefore, developers should
have the means to change their system at run-time, to try out changes, and
share new features or tool adaptations with others in a controlled way.
To address this, we developed two approaches: first, we propose to

develop tools as run-time-modifiable parts that can be cloned to safely
change them. Adapted tools can then be shared via a parts bin, so that
they can be collaboratively developed. Second, we propose to modularize
changes to the base system via layers that can be scoped, depending on
the execution context, to make the development of the base system safer at
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run-time by reducing the risk of tools breaking themselves. Furthermore,
layers can be used to share such changes in a wiki-like collaboration setting.
We implemented our approach in Lively Webwerkstatt, a collaborative,

self-supporting development environment based on Lively Kernel. Its
programming tools are developed as malleable parts that are shared via a
parts bin. Deep cloning makes evolving tools safe and also allows alternative
ideas to be tried out side by side in the running system. Development layers
are implemented using ContextJS, our context-oriented JavaScript language
extension, which supports domain-specific scoping strategies, that allow
restraining behavioral adaptations not only to the dynamic extent of an
execution, but also structurally to object composition hierarchies.
We present example artifacts and analyze the repository data of

Webwerkstatt, in order to discuss and evaluate our approach. Webwerkstatt
has been actively used for more than three years now—not only by a small
group of core developers, but also by external users, including our students,
for whom it has served as a shared development environment. During this
time, its users successfully worked on their projects, adapted tools, and also
helped to evolve Lively Webwerkstatt itself.
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1 Introduction
The Web has become an important platform for a wide spectrum of ap-
plications. However, the workflow for creating those applications usually
involves long edit-and-reload cycles. One way to shorten the feedback cycle
is to integrate the development and run-time environments, so that appli-
cations can be changed while they are used. Programming environments
for dynamic languages, such as Lisp [116] and Smalltalk [35, 49], are devel-
oped in such a self-supporting way. Self-supporting development environments
(SSDE) are a subclass of self-sustaining systems (S3) [44], which also include
all kinds of systems, tools, or languages that somehow share the notion of
being implemented in themselves.
SSDEs keep development tools and applications together, so that both

can be changed from within the same environment while the applications
and tools are being used (as shown in (Figure 1.1). In contrast, traditional
development environments separate the tools from the applications that
are built using those tools and, therefore, changing the tools requires a
second environment, making it more complicated to adapt the tools while
they are being used.
Continuously and interactively developing a running application has

benefits, such as shortening the feedback loops. However, adapting a run-
time environment from within itself also has some drawbacks. Rather like
locking yourself out, in developing a system using the tools that system
provides, one can easily reach a state that does not allow any subsequent
adaptations. This, of course, can happen on purpose or by accident. In
Smalltalk, this feature is sometimes used to build an application by strip-
ping all the development tools before shipping the system image to cus-
tomers [15]. So, being able to change every aspect of a system also brings
with it the power to completely break the system itself.
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Once tools that are needed to perform changes are disabled or broken,
such tools will not be useable until they are restored by external actions.
Like some “Deus ex machina”, another set of tools or external system is
needed. Smalltalk, for example, provides an emergency evaluator, which is
an interactive shell that allows the system to be repaired when the standard
tools are broken [86].
This situation requires users to be careful whenmaking changes to impor-

tant parts of a self-supporting system. This problem is not a bad thing per
se, as experienced users often prefer having simple, yet powerful tools such
as Unix’ command line tools, even though they are hard to learn [55, 111].
However, programming is already hard enough, without it being made
even harder by having to think about how to perform a change safely. As
we want to allow developers to stay in their self-supporting development
environment, we have to provide means that allow developers to cope with
this problem.
We want to support programmers in interactively evolving their tools

and applying those changes in a safe way. The table in Figure 1.1 shows that
developing Web-applications (second row) in self-supporting development
environments (first column) is similar to a traditional setup (second column)
where the tools are separated from the applications. When accidentally
breaking the tools, no other users are affected and developers can fall back
on other means, such as using another system to repair the original one.
In Web-based development environments (third row in Figure 1.1) the

tools themselves run in the Web and are shared with others. The traditional
setup (right column) separates the tools that are used to develop the appli-
cations. The good thing is that they cannot be broken this way, but the bad
thing is that the system cannot be adapted or evolved while you are using
it, either. In contrast, users can change the system from within when using
self-supporting systems via the Web. Problematic is that users can break
the system not only for themselves, but since the environment is shared
with other users, it can be broken for others, too. This is a hard choice [19],
since there are upsides and downsides for both alternatives. Similar to
wiki-like open collaboration platforms, reverting changes to restore the
functionality of a system is a general option to mitigate the problem in the
left column of Figure 1.1. However, it forces you to step outside of your
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working environment, while at that time the system might not be usable
for other users.
The topic of this thesis is, how to provide users with the means to work

more safely in a collaborative, specifically Web-based, self-supporting de-
velopment environment without having to leave it.

1.1 Challenges in Evolving a Collaborative
Self-Supporting Development Environment

In this thesis, we explore new ways of evolving a Web-based development
environment in a self-supporting manner. Our motivation originates in our
work on the Lively Kernel project [50]. The Lively Kernel is an environment
based on the idea of combining Smalltalk-like development with a wiki-like
way of collaboration [59]. The goal of the project is to be able to directly
create active content and applications in the Web and allow others not only
to use or play with your creations, but to explore them by deconstructing
them and reusing parts for their own creative programming work.
Further, since Lively Kernel is a shared environment, developers are

not only users of their programming tools but also the tools’ potential
developers. That iswhy, besides being a general programming environment,
it incorporates elements of end-user development (EUD) [63]. In this way,
while designing, implementing, and evolving the system, we were guided
by the following general goals and challenges:

Run-time Adaptable Tools Developers can be regarded as (end-)users of
their tools so, when adapting their environment, they perform end-user-like
programming activities. This might seem strange, since developers should
be, by definition, professional programmers. However, they usually have
to work on domain-related tasks, instead of tooling related IDE adapta-
tions. In order to make the environment developer-as-end-user-friendly,
the tools should lend themselves to run-time customization. By making
tools explorable and composable, users can, when they are dissatisfied with
their tools, have a look at the inner workings, decompose them, reuse parts,
and adapt them to better address their individual problems. “... it is by
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fixing things that we often get to understand how they work” (Richard
Sennet) [96]. So, it is only by being able to explore, repair, and adapt our
tools that we are given full control over them and are able to use them in
new and, from the point of view of the original developer, unanticipated
ways.

Run-time Adaptations of Base System Depending on the programming
technology used for creating a system, the means to adapt them may vary.
For example, due to its origins in Smalltalk, the base system of Lively Kernel
is built using a classical class-based approach. Since the base system is not
built using graphical objects, cloning and direct manipulation of objects
cannot be applied here. To safely work on core classes that provide base
functionality in a self-supporting environment, we have to devise means
that allow the system to be adapted from within, but in way that does not
impair the development environment.

Direct but Controllable Sharing of Adaptations The benefits of being
able to collaboratively evolve a shared environment from within itself bal-
ance the drawbacks of an environment that can be broken by everyone
using it. To mitigate these drawbacks, we have to find means by which
everyone can change the environment in a way that does not affect others.
Newly created tools and adaptations should co-exist and not necessarily

pollute the base system. The new tools and adaptations should be available
for all users to draw ideas from and reuse them—or parts of them—in their
own applications.

1.2 Contributions
In this thesis, we propose two novel approaches for adapting tools in a
collaborative, self-supporting development environment. The approaches
address the problems at different abstraction levels (as shown in Figure 1.2):
the cloning of lively parts at an end-user scripting level and the scoping of
changes in context-dependent development layers at a system programmer’s
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level. They were implemented and evaluated in Webwerkstatt, a wiki-like
Web-development environment, based on the Lively Kernel.

1. Directly Modifiable Lively Parts Content, applications, and tools are
built from the same, user-modifiable objects (lively parts). Based on this,
tools can be cloned and their clones can be modified in a safe way. This
means, for instance, that editing the editor tool does not yield the problems
of meta-circular dependencies, caused by reflection. A general objects
serialization mechanism allows both: to clone objects at run-time and to
publish objects in a shared parts bin repository, therefore, allowing users to
directly share their modified parts with others in the wiki.

2. Context-depended Development Layers Context-oriented program-
ming (COP) provides dedicated support for defining and composing varia-
tions to basic program behavior. In addition to solely using COP to separate
a system into dynamically composable features, we propose to express
changes to the base systemduring development as layers. By using dynamic
layer activation and composition, behavioral adaptations can be applied at
run-time, without necessarily affecting and, therefore, potentially breaking
the tools of the environment. Having modularized changes to the bases
system into development layers allows a group users to experiment with new
features, without changing the base system for all users.

3. ContextJS: an Open Implementation for Layer Composition We pro-
pose instance- and structure-specific scoping strategies to address the need
to control the scope of adaptations dynamically and in domain-specific
ways. An open implementation for layer composition allows the customization
of such domain-specific adaptation rules. In the domain of user interface
(UI) programming, for example, layers can be activated for a hierarchy of
graphical elements.

4. Preserving the Derivation History of Objects When an object is
cloned, the new clone and each cloned subobject are assigned a new unique
identity, so they can coexist with the original object and its subobjects side
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by side in the world. This renders comparing two objects difficult, because
the identifiers of the objects involved cannot be used. By preserving the
derivation history as a list of previous identities, we can leverage that informa-
tion later when comparing objects. This is especially useful to automatically
resolving conflicts when merging objects.

1.3 Outline
This thesis is organized into four parts:

• Part I introduces self-supporting development environments and
outlines issues that arise when evolving a collaborative Web-based
environment in a self-supporting way. Chapter 2 presents several
object-oriented approaches for adapting tools in self-supporting de-
velopment environments. It further introduces Lively Kernel as a
collaborative Web-based authoring environment and its challenges in
evolving the wiki-like system from within itself.

• Part II presents our two approaches for the safer adaptation of tools in
a collaborative, specifically Web-based, self-supporting development
environment, together with a novel approach of COP layer composi-
tion that allows for new domain-specific scoping strategies. Chapter 3
presents LivelyWebwerkstatt and its two approaches, which can prevent
the breaking of tools during their development. When tools are built
and adapted using lively parts, they can safely be modified by direct
manipulation after they have been deep cloned. Context-dependent
development layers allow the adaptation of the base system in a scoped
manner, so that tools do not break themselves. Both approaches make
evolving tools safer at run-time and allow the adaptations to be shared
with others. Chapter 4 presents the open implementation for scoping
behavioral adaptations with ContextJS. New scoping mechanisms are
needed to isolate tools from potentially dangerous reflective changes
at run-time.

• Part III presents implementation details and evaluates and discusses
the development of tools with lively parts and development layers,
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based on examples and data gathered in Lively Webwerkstatt’s devel-
opment history. Chapter 5 discusses implementation details, such as
the object serialization that serves for the similar sharing and cloning
of parts likewise and it demonstrates how the derivation history is put
to use when comparing and merging objects. Chapter 6 details case-
studies of tool adaptations and their evolution in Webwerkstatt using
parts and development layers and discusses some limitations, such
as the overhead of storing meta-information and persistent garbage
collection issues.

• Part IV discusses related and futurework. Chapter 7 relates the results
of this thesis to other self-supporting and collaborative programming
environments. It discusses approaches to adapt tools and techniques
for scoping dynamic behavioral adaptations. Chapter 8 provides an
overview of future work and concludes the thesis.
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2 Tool Adaptation in Collaborative
Self-supporting Development
Environments

A development environment is a software system that is used to create
and evolve software. Tools in such an environment include source code
editors, compilers, object explorers, and debuggers. When the tools are
tuned towork together, such systems are also called integrated development
environments (IDEs). Among development environments, self-supporting
development environments are special, because they can be used to evolve
themselves at run-time. Wikis are collaborative authoring environments
that allow working asynchronously on shared content from within the
Web-browser. Combining self-supporting development with wiki-like col-
laboration allows for an open software development approach, where the
whole environment can be customized at run-time and collaboratively
evolved.

2.1 Self-supporting Development
Creating and evolving tools while they are being used is common practice
among programmers: writing shell scripts or extending text editors to
optimize a programmer’s workflow are the most common examples. Self-
supporting development environments—such as Smalltalk [35], Self [122],
Emacs [104], Common Lisp [106], Squeak [49], and Lively Kernel [50]—
are systems where developers can evolve their environment while they are
using it. Common to all of these environments is that they keep the software
development tools—such as editors, debuggers, or code browser—in the
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Tool Adaptation in Collaborative SSDEs

same environment as the objects and meta-objects they are working on.
This allows for a direct development style with short feedback loops. A
good motivation for such interactive programming styles is presented in
Inventing on Principle [124]. It can be seen here how changes to the source
code can be immediately observed in the running program.

2.1.1 Programming at Run-time
Although it has recently become very popular in the form of live program-
ming [124, 78, 38], programming at run-time dates back to the first interac-
tive computer usages. Being able to incrementally edit a running program
dramatically shortened feedback loops. Before computers became inter-
active a typical programming workflow included handing over a stack of
punch cards to operators and coming back the next day to get the results.
Lisp programmers were the first, in 1961, who demoed live programming
a computer [77], after being able to regularly use the expensive computers
for themselves, at night, in a more explorative and playful way [61]. For
some time, programming at run-time continued to be the preferred way of
creating software for some schools of programming, such as the Smalltalk
programmers who pioneered object-oriented programming (OOP) and
personal computing in Xerox PARC [40, 53].
Both Lisp and Smalltalk programmers continued to prefer working in

combined run-time and development environments. These environments
are each deeply integrated with a dynamic programming language that
allows working at very high levels of abstraction, but also directly deals
with the concrete data and the behavior of running programs. Their pro-
gramming approach is abstract, but also concrete and specific at the same
time. They can describe their problems in abstract, often domain-specific
ways, but at the same time interact with their running representation. As
a result, the feedback loops and, therefore, the length of iterations can be
kept very short. This is possible because it is easy to switch between using
and developing an application or even to do both at the same time.
In this thesis, we use the attribute “self-supporting” to distinguish be-

tween development environments that can be used to adapt themselves
at run-time and those that cannot. The extent to which a system can be
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adapted or evolved may vary. Some environments provide the tools and
mechanisms to completely evolve themselves. Other environments just
allow the customization of specific parts at run-time.
Self-supporting development environments, such as Smalltalk, rely on

reflection and self-modification capabilities of the underlying programming
language. Smalltalk, for example, reifies meta-structures and concepts of
the underlying programming language as objects. Classes are themselves
objects and can be changed by tools or code at run-time. Maes describes
this as a causal connection between the system and its meta-level [73].
The meta-level reifies its internal state as objects that are accessible to pro-
grams running in the system. Those reified objects can provide access to
both static meta-structures, such as classes or methods, and dynamic meta-
information, such as access to variables on the execution stack in processes.
Since this connection between system andmeta-level is bidirectional, chang-
ing the state of these objects will also affect the meta-level, e.g. replacing a
method in a Smalltalk class object will result in an actual behavior change
in all instances of that class.

2.1.2 Meta-circular Dependencies
Having such tight interaction between tools and code in one system can
make the development of the core behavior difficult, as tools are changing
the classes and functions that they are dependent on. Errors or debug state-
ments in some core part of the system may break the whole development
environment and force a restart. Developers can get used to such behavior,
create workarounds, or become overly careful when changing core parts of
the system.
Such self-supporting development environments often come in different

flavors, depending on which kind of language they are built with and what
the preferred way is for programming in that language. For example, as
the comparison of Figure 2.1 and Figure 2.3 shows on an abstract level,
the benefits and drawbacks are similar in file-based and object-centered
development environments.
The workflow of tool adaptation in file-based environments like Emacs

starts by loading the environment (as shown in Figure 2.1 1). The tools in
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Files

 

File-based Self-supporting
Development Environment

(Emacs)

Tools'Tools

Functions 
and Variables

(1) load

(5) feedback

(6) depend

(4) reload(2) change

(3) REPL

Figure 2.1: Workflow of adapting tools in file-based self-supporting devel-
opment environments like Emacs.

the environment can now be used to change behavior, which, in the case of
Emacs, is achieved by editing function definitions in files (2).
We call Emacs self-supporting, because it includes a read-eval-print-loop

(REPL) which allows developers to directly apply changes to the running
system itself by executing statements (3) or reloading entire files (2). Both
approaches produce much quicker feedback (4) than reloading the entire
system every time a change is made. However, having such a powerful de-
velopment approach that allows for very quick iterations between making
small changes (3) and getting feedback (5) also comes with a price. As the
Figure 2.1 further shows, being able to change its own code introduces a
meta-circular dependency (5) between the tools and their abstract repre-
sentation. This dependency is inherently essential for the ability to evolve
all parts of the system. However, not all changes are good and some of
them may break the system in such a way that it cannot longer be fixed
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Figure 2.2: Separated tool environment

from within itself. So, a mechanism is needed to safeguard against such
problems.

2.1.3 Separating Run-time from Developing Environment
A drastic solution for getting rid of such potential problems is to separate
the run-time from the development environment. The more conservative
approach is to reload the system under development after every change
and this is the standard approach to development in many systems.
As it is difficult to make changes at run-time in statically typed languages

such as Java, development environments like Eclipse [33] have to use just
such an approach. Eclipse is a development environment for Java and it is
written in Java. It is used to develop plugins to customize itself and create
the next version of it. The difference from the approach in Emacs is that
this is not a lightweight process. Making a quick customization is easy and
fast in systems that can be changed at run-time, but it is much more indirect
in systems like Eclipse.
As shown in Figure 2.2, the workflow of adapting tools starts by first

loading the development system (1), performing the change by editing files

21



Tool Adaptation in Collaborative SSDEs

and, if necessary, compiling them (2), then loading the system a second
time (3), to get some feedback (4). Since standard development tools, such
as a debugger, allow the interaction with the run-time system to a certain
degree (5), it is also possible to get immediate feedback while developing.
The difference here is that the development-environment always comes
first. It is not possible to adapt an environment while it is being used, so
the context that motivated the change is still preserved. To achieve this,
the development environment needs to be loadable on demand so that the
running system can be changed when needed.
Another benefit of this edit-compile-run cycle is that developers are used

to developing their systems in such a way, so they do not have to change
their workflow when having to adapt their own tools. Fortunately, the
performance of computers has increased so much that the actual time
needed to compile a system is no longer such a big problem as it once was.

2.1.4 Automating the Feedback loop
Bringing the system into a state in which the new behavior can be tried out
can still make the feedback loops much longer. One way to compensate
this is to automate it using unit and acceptance tests, which allow getting
feedback without any manual user interaction.
Getting such automated feedback is a valuable feature of Test-driven

Development (TDD) [10]. TDD always starts by creating a program that
tests for the desired behavior or absence of a bug. This has a lot of positive
side effects, but it also raises the barrier of making the change. While
programming at run-time, we might be able to see and fix the problem
directly, having a context in which it is easy to come up with a solution.
TDD is one way to get this kind of feedback and context in a reproducible
fashion. The advocates of TDD argue that the additional work for writing
the tests will pay off in the short term. The reasons are that it makes the
development of the actual functionality easier and it keeps the system
evolvable. Hence, developers can be sure that they did not accidentally
break anything after successfully running all tests in the system.
When the programmer does not have control over the full system, recreat-

ing and testing some situations programmatically can become more taxing
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than actually fixing the bug or implementing the desired behavior. This can
also, sometimes, be much more difficult to achieve. In some cases it might
also be unclear what the actual result should be. An example for this is fine
tuning parameters or exploring possibilities in a prototype. On the other
hand, if the test is not written first it might never be written at all and the
code quality will deteriorate. So, ideally, programmers should be capable
of knowing, when they use interactive programming to instantly try out
new ideas, or when to do more rigorous system development. Ideally, a
development environment should allow the ability to continuously go from
one style of programming to the other, starting with trying out new ideas
in an interactive fashion, but allowing them to evolve into the maintainable
part of the system.

2.1.5 Object-centered Development Environments
Programming Environments are not always built around the idea of modi-
fying text in source code files. Object-centered systems are an extreme case
of run-time programming, since in this approach, changing behavior in the
running system is the default and not an additional feature.
A workflow in a Smalltalk-like development environment is shown in

Figure 2.3. At some point, the system has to be loaded (1). Traditionally,
this simply consists of deserializing an object-space and then starting to
run some processes. The system is then programmed by directly modi-
fying classes (2). A behavior change is directly reflected in objects using
the classes, though developers can get immediate feedback (3). Making
these changes persistent by saving the complete state of the system, auto-
matically preserving changes, or exporting some classes as source code
(4) happens after the edit. Similar to Emacs-like environments from Fig-
ure 2.3, this workflow shows the benefits and the problem. The benefits
are: being able to adapt tools at run-time and having short feedback loops
between modifying some meta-structures (2) and observing effects in the
running application (3). The problem that is introduced here is the danger
of accidentally breaking the system while using it (5).
Unlike traditional file-based systems, programming in object-centered

systems is not done by editing plain text files, but by directly manipulating
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Figure 2.3: Abstract flow of changes and feedback in a self-supporting de-
velopment environment

objects in the run-time environment. What those objects are and how they
are used to create tools and applications depends on the actual system.
Systems like the Smalltalk-80 [35], Self [122], Squeak [49], and Lively Ker-
nel [48] are, from a certain perspective, very different systems. However,
their approach of being able to directly inspect and change the state and
the behavior of the running system and, with that, of being able to evolve it
from within itself make them, in a sense, very similar.

2.2 Behavioral Adaptation in Object-centered
Systems

Adapting tools or applications in a self-supporting environment, not only
allows us to try to make sense of source code, but to actually work with live
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Elephant

Tail

 Brush

Goal: make glow

glow behavior

Figure 2.4: Example of a behavioral adaptation in an object composition:
The motivation is to make the end tail of an elephant glow.

objects that form the application at run-time. However, how such objects
are programmed depends on the language constructs and object technology
used in the system. When interactively exploring the object structures, one
can play around with setting properties or calling methods to see what
they are doing, but going from that explorative stage to actually starting to
refine the behavior is more difficult and depends on where the behavior
is usually defined in the system and how such behavior can be changed,
adapted, or reused.
To compare the various approaches, we use a common simple example

of adapting an object in a composition hierarchy. Examples for such com-
position hierarchies are common in parse trees, business objects, or user
interfaces. Developers in object-centered systems often work with such a
composed objects. Since it is a composed object, it cannot always be directly
adapted, but the actual behavioral adaptation may have to happen in a sub-
object. Instead of using an actual example of the domains of user interface
design or tool construction, we use an explicitly invented example. In this
way, the distinction between domain and technology becomes clearer.
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Elephant Tail Brush

Glow

A:Elephant B:Tail C:Brush

(1) change

(2) feeback

Figure 2.5: Behavioral adaptation in the elephant example: the most direct
approach is simply to change the original implementation to glow.

Figure 2.4 illustrates this artificial example: themain object is an Elephant
which has a Tail and the Brush of the tail should change its behavior so
that it glows. How the actual glowing behavior is performed does not
matter at the point, we assume here that it involves changing code in a
method of Brush. The Elephant is composed of various subobjects, which,
by themselves, are composed of subobjects. Interesting to the example is the
relationship of the Elephant, its Tail, and the tail’s Brush. Other subobjects,
such as the feet, head, and ears are not important and have been omitted
here.

2.2.1 Change Original Code
The simplest approach to make the tail glow is just by changing the orig-
inal implementation, as shown in Figure 2.5. In run-time programmable
systems, changing the abstract behavior in the class (1) is immediately re-
flected in the instance (2). As long as the instance somehow actually uses
this behavior, the developer can get feedback while programming.
In self-supporting systems, this approach is problematic when the

Elephant, or Tail, or Brush are an important part of the base system. In our
example, the Brush was reused by the original Elephant’s creator. Besides
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D:Tool

 E:Brush

(1) "Brush" as part of the "Tool" 
      is used to modify system

(2) "Brush" as part of the 
      "Elephant" should be changed

Meta-circular 
depencies

Elephant Tail Brush

A:Elephant B:Tail

C:Brush

Tool

(3) share behavior

Figure 2.6: Problem of adapting the core behavior of a system. The Brush is
used in the Elephant and in the Tool. So, when modifying it, meta-circular
dependencies can become a problem. Such Escher-like meta-circular [46]
loops are inherent in self-supporting systems.

being used as the tip of an Elephant’s tail, it is also part of a tool needed to
paint objects, making the development environment dependent on it.

As shown in Figure 2.6, a potentially problematicmeta-circular (reflective)
dependency is introduced when the functioning of the environment and its
tools depend on the meta objects, in this case, important classes, which the
developer is working on. The BrushC of ElephantA is modified by BrushE
of Tool D. It is a meta-circular dependency. The class Brush is modified and
needed for modification at the same time. Since classes are meta-objects,
their reflective meta-circular modification fromwithin the system can break
the system.
A similar problem occurs when one of these classes is reused by other

applications or other parts of the same application which are unfamiliar
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to the developer. Making the tail glow, then, will not only produce the
expected glowing elephant, but it also makes the tails of other animals glow,
something which was not intended by the developer. When, for example,
the class Brush belongs not to the Elephant’s application, but is reused itself,
this problem is an instance of the fragile base class problem [79].
Introducing a newandpotentially highly experimental feature, by directly

changing the original code also has the downside that the original is no
longer available. Such conflicts with the original version can be solved at
various levels. In file-based systems, there is always the option of coping
the original file, when files are directly executable, such as in scripting
languages, and they are not part of a bigger framework, where their path or
name is important. In theses cases, this is a viable option. However, this is
often not the case. Having some form of version control system solves these
issues. By allowing files to stay in their place and preserving the original
versions, they can later be restored or used for computing what has been
changed.
Both approaches address the problem outside the environment and,

therefore, do not help in the domain of run-time programming, because, in
that way, the original and the modified version cannot coexist side by side
in the same environment.
The software engineering solution is to make the behavioral variation

optional using various programming language constructs. The most basic
approach is to use control structures such as if-statements at the right places.
This would also require adding state somewhere so that the glowing can be
enabled or disabled. This blows up the original code and scatters the new
glow feature over many entities and places in the code, making it difficult
to remove the feature afterwards.

2.2.2 Class-based Programming
Instead of adding the new glow features directly in the class Brush, de-
velopers learned that they can refine the original class by subclassing it.
As shown in Figure 2.7 the new class GlowBrush inherits from Brush (1)
and adds glowing by refining some exiting behavior (2). The classic object-
oriented approach has the downside that subclassing is not enough in this
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Elephant Tail Brush

GlowElephant GlowTail GlowBrush

Glow

D:GlowElephant E:GlowTail F:GlowBrush

(2) refine(3) overhead of additional subclassing

(4) new instances for the new glow behavior

(1) subclass

Figure 2.7: Behavioral adaptation in the elephant example, implemented
with subclassing.

scenario. Due to the object composition, the elephant has, somehow, to use
the new GlowBrush class. This can be achieved by additionally subclassing
Elephant and Tail (3). The new glowing feature does not affect normal
elephant objects, but only affects instances of GlowElephant (4).
Subclassing is more elegant than directly changing the code, because it

separates the glow feature in a new entity, which can be easily dismissed
in the case of the glowing elephant’s tails will no longer being useful. The
downside is that, in the case of adapting an object composition, subclassing
one class is not enough but requires the subclassing of other classes or
adapting them in other ways in order to manage the new dependencies,
making it cumbersome to use.

2.2.3 Changing Objects at Run-time
When the behavioral adaptation is only neededwhile experimenting during
development, instance-specific behavior might be an option. This means
modifying just one elephant might be an option, if the developer wants
to know how an elephant looks and behaves with a glowing tail. Some
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A:Elephant B:Tail C:Brush

Glow

(1) not persisted change

Figure 2.8: Behavioral adaptation in the elephant example with instance
specific behavior

programming languages allow objects not only to have state, but instance-
specific behavior. How this is implemented in different programming
languages varies but, in principle, it allows us to add behavior directly
to an object. Our running example in Figure 2.8 shows that the glowing
behavior can now be added directly to the instance C of the class Brush.
Such instance-specific behavior has to be created somewhere. Normally it
is used to customize objects in the code where the objects are created, using
some kind of meta-programming. In interactive systems developers can use
this language feature for experimentation, by just adding the behavior using
a REPL or other tools at run-time. Since in most systems behavior is stored
separately from objects, e.g. source code files vs. data base, their instance-
specific behavior cannot be persisted. Even though many programming
languages support it instance-specific behavior is, therefore, often transient.
With the exception of end-user programming approaches like Etoys [54, 2],
usually, objects are not exchanged directly between developers or used as a
means to package applications or behavioral adaptations.

2.2.4 Prototype-based Programming
Prototype-based programming [62], as implemented by Self [122], builds on
the idea of programming objects directly and allowing objects to reuse the
behavior of other objects through delegation. This is achieved by unifying
Smalltalk’s object and class dualism, so that state and behavior are treated
equally in objects. In prototype-based programming, different from typical
class-based programming, objects can also have state in addition to behavior.
Some objects can serve as prototypes and share behavior and state among
a group of objects. Each object can receive messages that are used to access
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Figure 2.9: Behavioral adaptation in the elephant example, implemented
with Self-like prototypes.

state or trigger behavior and can decide either to handle the messages
by themselves or to delegate them to its prototypes. This feature makes
Self’s prototypical inheritances more powerful than Smalltalk’s class-based
approach. It further allows experimenting with different development
styles and organizations of code. But programming in Self can still be very
similar to Smalltalk’s class-based programming, because prototypes can be
used like classes [123].
The idea of prototype-based programming and its implementation as

prototype-based inheritance by unified behavior and state lookup [122] are
not the same, even though the latter can be used to achieve the first in many
cases. However, it does not matter if shared behavior is represented as class
or as prototype. When a prototype only serves as an abstract container for
shared behavior, it cannot be applied to applications or tools that are not
represented as a single object, but are composed of many subobjects. In Self,
prototype-based inheritance cannot deal with complex object structures,
they have to be separately copied or remain shared.
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Figure 2.9 illustrates this problem by showing how the adaptation of
Elephant can be done with prototypes. Theoretically, such adaptation of
objects at run-time is one of the strengths of prototype-based programming
as advertised in Self. The problem with Self-like prototypes is that object
composition cannot be delegated. Nested object composition is not repre-
sented as messages that can be refined and delegated. So, as in the case of
subclassing the classes Tail and Brush as shown in Figure 2.7, the objects
Tail and Brush have to be copied (2) before they can be adapted (3). To
make use of prototype-based inheritance, a copy can be made by creating
an empty object that can delegate messages to the original object so that
behavior can be reused.

2.2.5 Morphic: Directly Manipulatable User Interface at
Run-time

Self also served as a platform for researching novel user interfaces. It intro-
duced Morphic [76, 75], a new way for constructing user interfaces with
directlymanipulatable graphical objects. InMorphic, all graphical elements
in the user interface are represented asmorphs. Morphs are recursively com-
posed of sub-morphs, react to events, and can draw themselves. Morphs
are typically composed in trees, where a morph has one parent and can
have many children. Morphs compute their position on the screen from
their own position, and that of their parents and apply various styles, such
as fill color and border width. What makes Morphic special is that the user
interface is constructed and can be adapted at run-time.
The promise that prototype-based programming enables a philosophi-

cally different way of programming [100] cannot be held when it comes to
working with morph hierarchies, because prototype-based inheritance in
Self does not extend to object composition. Object composition is essential
to constructing rich graphical applications that cannot be represented by a
single graphical object, which only draws itself. For this primitive object
case, the prototype metaphor holds. A typical example in Self is the simu-
lation of a gas tank [123]. As shown in the screenshot in Figure 2.10, the
gas tank contains many individual objects that move around and bounce
when colliding. Figure 2.11 shows how these individual atoms are directly
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Figure 2.10: Screenshot of Self’s gas tank example, showing the running
simulation (1), the behavior definition (2), and an exploration of the simula-
tion state (3) side by side.

represented by objects that inherit from a common prototype. Changing
the state or methods of the prototype immediately affects the individual
objects, producing a very short feedback loop. As long as the appearance
of objects is determined by properties, such as color or extent, and by a
method that draws it, a developer can prototypically modify one object
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traits atom A1:atom A2:atomtrait gasTank
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(1) Abstract Traits (2) Objects in Simulation

Figure 2.11: Abstract objects (1) and their instances (2) in Self’s gas tank

and see the changes immediately applied in the other objects as well. The
metaphor breaks down when the objects in the tank become more complex,
e.g. by adding another graphical object as subobject to our atoms making
them molecules. Then prototypical inheritance conflicts with the Morphic
metaphor. In Morphic, all graphics on the screen are directly and bidirec-
tionally represented by graphical objects (morphs). If the subobject were
somehow prototypically inherited, it would be displayed several times on
the screen and then conflict with the Morphic metaphor.
Rendering an object multiple times, is not a general problem. Scene

graphs used for rendering do this all the time. One solution could be that the
subobjects are immediately rendered multiple times on the screen. When
graphics are procedurally produced, as in the drawing loop of computer
games, the pixels on the screen have no knowledge of which drawing
method produced them. This draw method typically displays the complete
scene graph in a frame. But in Morphic, this approach breaks the one-
to-one relationships with identifiable graphical objects on the screen and
their corresponding morph objects. If only the graphical appearance were
displayed, this would not be a problem. But since the graphical interface
should also be interactive, it has to respond to events and propagate them
to their parents. This is why the objects on the screen need to have just
a single parent, forming a tree and not a graph, so that it is clear which
object was actually clicked on. For this reason, the same graphical object
should not be on the screen several times. This means that the graphical
composition of objects in Morphic cannot be reused through prototypical
inheritance. Subobjects have to be deeply copied and, in doing so, the
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metaphor of working on a prototype where all changes are immediately
propagated to inheriting objects is broken.

The graphical model of aWeb-browser follows the same rules as Morphic
here, since the graphics are represented through a composition of objects
and not procedurally generated by calling a draw function in each frame.
Therefore, in a Web-based system, we cannot avoid the object composition
problem by falling back on frame-based drawing.

2.3 Collaborative Self-supporting Development
Since collaborative Web-applications are inherently distributed to some
degree, they cannot be built in a simple self-supporting way as presented
in Section 2.1. Web-applications can be developed in object-oriented self-
supporting development environments, such as Smalltalk, but the client
side code running in the Web-browser cannot be explored or adapted at
run-time. Since client side parts run in a separate environment, the benefits
of simple run-time programmability are lost. As we have seen in Figure 1.1,
in standard Web-development (second row) the tools run locally in the self-
supporting system, as in the traditional setup. So, both approaches only
indirectly allow working on the behavior of the Web-applications that runs
on the client’s side. The typical edit-and-reload cycle of a Web-application
is not changed if the JavaScript parts on the client’s side are delivered by a
traditional system or a Smalltalk-based system.
Moving the development environment completely into the Web does not

solve this problem at all, since a typical Web-application still runs half on
the server and half on the client. What happened is that the problem flipped.
Now the client’s side can be developed more directly, but for developing
the server-side part, the client has to indirectly reach into the server-side.
A solution that solves this problem is to get rid of the application server
part and build the whole application in the client. When the development
environment is capable of creating such client-side applications, it can be
self-supporting.

35



Tool Adaptation in Collaborative SSDEs

2.3.1 Lively Kernel—A Collaborative Self-supporting
Development Environment in the Web-browser

A development environment that follows this idea is Lively Kernel [48], a
self-supporting, Web-based, and combined run-time and development en-
vironment. Lively Kernel (sometimes abbreviated as Lively) recreates a
Smalltalk-like development environment in the Web-browser. With Lively,
interactive Web-content can be directly created in the Web-browser and
Web-applications can be changed while they are being used. Lively Kernel
is built using Web technology and it derives from a Smalltalk background.
It, therefore, combines object-centered development and run-time program-
ming with rich media and the collaboration possibilities of the Web. Lively
serves as a platform to experiment with novel programming language
concepts and tool development approaches.
Unlike Smalltalk, it provides hybrid file-, class-based, and object-centered

development. Figure 2.12 shows both Lively Kernels development work-
flows: a) changing the base system by developing classes and b) using and
editing objects in worlds.
Similar to other Web-based applications, the Lively Kernel environment

is loaded by visiting special pages. Theses pages are called worlds, contain
user content and applications, and are stored in HTML files. The object
serialization is discussed in Section 5.2.
In Lively Kernel, individual Web-pages, as shown in Figure 2.13, contain

each one world which, as the root object, contains all other objects. All
visible graphical objects (morphs) are direct or indirect children (submorphs)
of the world. Non-graphical objects can belong to this world, by being
directly or indirectly referenced by a graphical object. Objects that are not
referenced are not persisted.
Lively Kernel bootstraps itself every time a world (Lively Kernel page)

is loaded as shown in Figure 2.12 (1). The base system is represented as
file-based modules that contain plain JavaScript source code. An example
Lively Kernel module is presented in the following listing 1:

1For better readability module prefixes are omitted.
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Figure 2.12: Web-based self-supporting development in Lively Kernel

1 module('animals').requires('morphic').toRun(function() {
2 BoxMorph.subclass("ElephantMorph", {
3 initialize: function($super) {
4 $super(new Rectangle(0,0,100,100))
5 this.addMorph(new TailMorph())
6 // ...
7 },
8 walkRight: function() {
9 this.moveBy(pt(10,0))

10 }
11 // ...
12 })
13 BoxMorph.subclass("TailMorph", {
14 // ..
15 })
16 // ...
17 })

37



Tool Adaptation in Collaborative SSDEs

Figure 2.13: A Lively Wiki page with a simulation of a radial engine and a
System Code Browser viewing its underlying class.

The module animals requires the morphicmodules to be loaded (Line 1)
before it will itself continue defining its own classes ElephantMorph (Line
2) and TailMorph (Line 13) that inherit from a general BoxMorph. The base
system is loaded by dynamically resolving those module dependencies.
After the object graph is deserialized, the World is started, and the system
can be used. A Lively Kernel page as shown in Figure 2.13 can be used,
like any other Web-page, to present information but, similar to a wiki, the
text and graphical content on a page can be edited. Unlike a traditional
wiki, this happens through WYSIWYG2 direct manipulation. After editing
a page, the result can be saved and sent back to the server (3). The Lively
Kernel is developed with a Smalltalk-like approach. The system and all
its applications are changed from within itself. However, unlike Smalltalk,
even though classes can be edited at run-time, they are not persisted in the
same object space as user objects, but are stored in JavaScript files that are
also changed on the server (4). In this way, both user-editable content and
the base system can be changed from within the wiki.

2What You See Is What You Get
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Figure 2.14: Editing content in Lively is propagated asynchronously like in
a wiki. Similar to a wiki, content changes stay local to pages (4), but changes
to the base system affect all users (5).

2.3.2 Wiki-like Collaboration for Content and Code
Since a repository in such a Lively Wiki [59] is shared, it serves an open
collaboration environment. The flow of changes in the wiki is shown in
Figure 2.14. Users can edit the content of a page directly in theWeb-browser
(1) and share the changes with other users in the central repository (2). The
repository automatically versions all changes to code and content stored as
serialized objects (3). Editing wiki content affects individual pages (4), but
changing the base system behavior affects all users of the system likewise
(5). This wiki-like collaboration happens asynchronously, a base system
change affects other users’ worlds only after they reload them.
Editing pages and changing the base system are two sides of development

in LivelyWiki. Since a wiki-like collaboration process is very open and puts
review after and not before publishing, such an approach to develop soft-
ware is very different from normal open source development approaches [80].
There is a different entry barrier between open source and wiki-like collabo-
ration. The entry barrier to make a simple edit in a wiki is much lower than
making a successful contribution to an open source project [83]. This can
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be partly attributed to the different skills necessary: being able to program
vs. basic computer literacy and language skills. However, the contribution
process is muchmore complicated and full of thresholds on the open source
side, making small contributions—due to a bad overhead to programming
ratio—not cost effective. Such minor contributions could be adding a better
error message or fixing a layout bug. By allowing users to change not only
content, but also to evolve the whole system, Lively Kernel is also a platform
for researching open and direct collaboration approaches.

2.3.3 Problems of Self-supporting Development in a Wiki
Directly changing parts of the system in a self-supporting environment can
be problematic as shown in Section 2.2.1. Such problems can occur when
the part that should be changed belongs to the base system. The change
could affect a feature of the environment or an essential tool that is needed
to adapt the system itself further. Making a change there may deprive the
system of it’s own future—in other words: the tool breaks, the system dies,
or it may still be running, but can no longer be changed.
In Lively Kernel, this self-supporting development cycle is extended

from the run-time of the individual development session in a browser to
the whole collaboration system. Since all changes are persisted and are
immediately used for loading new pages, a problematic overall system
state breaks the wiki development environment for everybody. Similarly
to wikis, code and content are under version control, so all changes can be
undone and the environment can be set to a working state again.
Even though, in theory, the system can break all the time, in our ex-

perience it used to be quickly restored or repaired. Since there are no
technological barriers for contributing in such a system, people who where
not used to such an environment can accidentally change the system with-
out realizing it. As in every evolutionary process, some changes are good
to the system, while others are bad. Multiple times we observed that users,
who fixed a bug for their project, did not realize right away that they not
only fixed this bug for themselves but for all users [67, 16]. On the other
hand, many first time users broke the system on the attempt to change it.
This seems to be a grave downside, but for the users it meant that they
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received immediate help from other users. Users helped each other, so the
system was restored for everybody. Additionally, it provided the occasion
for collaboration and learning from each other, so that they will be able to
help themselves better another time. This extremely optimistic approach of
open source is inherited from the wiki-way of collaboration, but can also
be traced back to the earliest Lisp programmers culture and their deliber-
ate, non-existent rights management in their Incompatible-Time-Sharing
System (ITS) [61, 77].

2.4 Summary
In this chapter, we have discussed self-supporting development environ-
ments and their inherent trade-off between short-feedback loops, self-
adaptability, and the danger of breaking the system while adapting it.
We have shown how object-oriented technology, such as subclassing and
instance-specific behavior, can be used to adapt complex objects in an object
composition, as this is a common requirement when working with graphi-
cal objects. We have presented Morphic as user interfaces framework that
can be explored, decomposed, and modified at run-time by the user and
discussed the limitations of prototype-based inheritance for that domain.
We have introduced Lively Kernel, a Web-based development environ-

ment that provides such a Morphic user interface. Lively Kernels explores
how combining a self-supporting development approach with aWeb-based
authoring environment can shorten feedback loops, both, when adapting
tools at run-time and when sharing adaptations and new tools with oth-
ers. Lively Kernel-based wikis combine a Smalltalk development approach
with an immediately usable open collaboration environment. As devel-
opment experience in Lively Kernel has shown, the inherent danger of
breaking a self-supporting environment while adapting it fromwithin itself
is amplified in a Web-based setting.
This thesis, therefore, explores how Web-based self-supporting devel-

opment can be made safer. Users should be supported in adapting their
tools at run-time and share their adaptations with others. Developing in a
Web-based environment should still allow for an explorative and direct pro-
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gramming style, andmake it usable also for a wiki-like collaboration setting.
Due to using a Smalltalk-like development approach with its traditional
class-based development methodology, Lively Kernel lacked fine grained
safety nets that help users avoid breaking the system while working on
tools. Further, behavioral adaptations and new tools should also be shared
with other users in a controlled way.

In the following chapters we will introduce Lively Webwerkstatt our ap-
proach to a self-supporting development environment. We show how tools
can be developed as user-modifiable parts. With development layers, we
demonstrate how to control the scope of changes in a way that it is safe to
directly evolve a system at run-time. Further more, we present a way to
share adaptations and new applications with other users in the wiki.
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Run-time Tool Adaptation
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3 Lively Parts and Development
Layers

In this chapter we present Lively Webwerkstatt, our approach to tool adap-
tation in a self-supporting collaborative development environment. Lively
parts [72, 68], are user-editable graphical objects that can be explored, cloned,
composed, and shared through direct manipulation. Through deep cloning
of parts, tools are prevented from breaking themselves when developed in a
self-supporting setting. Further, Lively Webwerkstatt provides development
layers [70, 66] as scaffolding mechanism that allows for context-dependent
run-time adaptation of the underlying base system. Both approaches to-
gether enable the community to evolve their collaborative environment
from within itself.

3.1 Lively Webwerkstatt
End-user adaptable applications, such as Lively Kernel, often exhibit a
two-layer-architecture: the base system, usually written in a system pro-
gramming language, and a scripting layer on top. In these applications,
tools are part of the base system and are developed with a standard class-
based approach using conventional object-oriented design and patterns
that, for example, separate the data model from the user interface. In self-
supporting systems, such as Smalltalk or Lively Kernel, the tools and the
environment can be changed at run-time. In such reflective environments,
users can also learn about the implementation of their tools by exploring
concrete instances. They can even experiment by changing the behavior of
objects at run-time through editing their class definitions. But as discussed
in Section 2.2, direct adaptation can lead to undesired behavior and using
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Figure 3.1: Overview of run-time adaptation in Lively Webwerkstatt

other object-oriented means like subclassing, instance-specific behavior or
prototypical inheritance, development can become safer but at the same
time also more complicated.
In Lively Webwerkstatt we provide two approaches—lively parts and de-

velopment layers—that should mitigate that problem. Figure 3.1 shows an
overview of object development in Lively Webwerkstatt. As it is based on
Lively Kernel, it provides the same basic means of direct object modification
(1) and programming with classes (2) as presented in Section 2.3.1. Both
approaches can be used to develop in a Smalltalk-like style, making the
workflow interactive and shortening the feedback loops. Being Web-based,
Lively Webwerkstatt further allows users to collaboratively develop appli-
cations and evolve the environment in a wiki-like way. But as discussed
in Section 2.3.3, being a Web-based collaborative environment amplifies
the danger of breaking the development tools while changing them, by
potentially breaking them for all users of the wiki, too.
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Lively parts and development layers can serve as scaffolding during develop-
ment and help users to adapt their tools more safely while using them at the
same time. This is achieved by implementing tools as run-time modifiable
partswhich can be deeply cloned (3) so that exploratively adapting them
gets safer. By publishing them in a parts bin, tools can be exchanged between
worlds and users. Since some features of the environment are not express-
ible as graphical objects, development layers (4) allow for context-specific
adaptations of the base system that make its evolution at run-time safer.

3.2 Lively Parts–Developing Tools as
User-modifiable Objects

In contrast to the first versions of Lively Kernel (as presented in [50]), objects
in LivelyWebwerkstatt can have persistent instance-specific behavior. These
scripted objects allow creating applications, games, tools and other active
content without programming their behavior in classes.
All properties of graphical objects (morphs) like style, position, extent or

text content can be changed directly using Lively’s halo user interface. Tools
like the StyleEditor or the ObjectInspector, which can be invoked from the
halo (as described in Section 5.1.2), can also be used.
A morph in Lively usually consists of several other morphs, forming a

tree structure which is also called a scene graph. The composition of morphs
can be changed via drag and drop or by using the halo. Reusable lively
parts are created by publishing named morphs in a shared repository called
parts bin. Due to the JavaScript object model, a morph’s scripts are only
properties which happen to be functions. So, by overriding methods of an
object’s class, the behavior provided by the base system can be adapted.
Section 5.2.2 shows how such persistent, instance-specific behavior can be
implemented in JavaScript.

3.2.1 Cloning Parts before Adaptation
To illustrate how cloning parts makes the adaptation of composed objects
safer, we come back to the elephant example from Section 2.2. In our
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Figure 3.2: Behavioral adaptation in the elephant example using parts

scenario, we want to experimentally adapt the Brush of the elephant E
without modifying E, but keeping the development itself direct and easy by
giving immediate feedback. Doing something directly and not directly at
the same time is a contradiction that we cannot solve. Therefore, we allow
users to modify something directly that is very close to the original: its
clone.
In object-oriented systems, cloning an object means creating a shallow

copy of it. A shallow copy is produced by creating a new object and assign-
ing it the same properties (attributes, instance variables) than the original
object has. Since both objects reference the same objects afterwards, this
kind of copy is called shallow. But complex objects, like morphs, cannot
be meaningfully copied that way, since a morph cannot have two owners.
When copying a morph, all its submorphs have to be copied as well. The
process of copying not only one object but recursively all its subobjects
that are referenced by it, is called deep cloning. As shown in in Figure 3.2,
deep cloning the object E also produces a copy of all its submorphs. We
call an object with all its subobjects that would be copied during cloning
a Lively Part and use the deep cloning mechanism as means in interactive
development and for sharing complex objects across worlds by publishing
them in a shared repository as described in Section 3.2.2.
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For the adaptation of graphical tools at run-time, we use the deep cloning
of objects as a mechanism to produce disposable copies which can be mod-
ified safely (1). If experimental changes break the object or produce unde-
sired effects, the copied object can be discarded and the original object stays
unharmed. For our scenario this means that after cloning the elephant E,
we can directly add the Glow behavior to the Brush in the cloned part GlowE
(2). That way we do not interfere with the original part E.

Unlike copying text or saving and reloading the same world, the cloning
will produce two coexisting exemplars. And similar to cloning animals
in the real world, the clone will be very similar but not identical to the
original. Since we want to preserve the invariant that all objects have a
unique identity, we have to give every object that is created during the
cloning process a new unique identity.
Whenworking with objects, the ability to identify them even though their

state has changed is important. An example application for using object
identity is the comparison of complex objects as described in Section 5.3.
When comparing objects, using the identity can help figuring out which
subobjects have changed and which ones were added or deleted. Without
being able to rely on the identity, objects can only be structurally compared,
making it hard to provide users with meaningful diffs, especially when the
composition of objects was changed.
To mitigate the problem of changing identities when cloning, lively parts

keep a history of their past identities. This history in form of derivation ids
is meta-information that is stored per object and updated in the cloning
process. For an evaluation of the overhead needed to store such information
see Section 6.4. Figure 3.2 shows how this derivation history is not only
maintained for the root object that is cloned, but also for all its subobjects
(3). The derivation history does not interfere with the functionality of the
self-contained GlowE, because in contrast to prototypical inheritance, it does
not share its behavior with part E.
To make development in a self-supporting system safer, tools can be

deeply cloned before adapting them. This does not have to be a conscious
decision of users but can be automatically provided by the system. Users do
not need to remember to actively clone a tool each time, so they can safely
modify it. In Lively Webwerkstatt the deep cloning of objects becomes
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part of the normal user interaction: graphical objects are copied all the
time and tools are copied by default when they are opened. So, editing the
scripts of an ObjectEditorwith another ObjectEditor is safe, because they
automatically are independent clones.
Following that approach, the dangerous cycle of changing a behavior

and accidentally breaking a tool while doing so is cut off by first cloning
the part (as shown in Figure 3.3). Developers can change scripts and objects
directly (3) in a cloned part tool (2), without breaking the tool itself, because
every instance has its own set of scripts and state. But since the tools are
still running in the same environment, the feedback loop (4) is kept short
and tools can directly interact with the objects they manipulate. After the
object is changed in the run-time environment, it can be (re-)published to
the shared repository (5) and, therefore, replace the original version. In
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Lively Webwerkstatt, we combined the saving of content with immediate
publication. This allows developers to directly fix a bug as it occurs, to fix
a typo on a button label, rearrange morphs to produce a tighter layout, or
just change colors to make the tools more appealing and share the changes
immediately with others.

3.2.2 Sharing Parts in a Parts Bin
Parts are graphical objects that the original developer decided to extract from
the world and publish separately so that they can be used and developed
in other worlds, too. A part does not only contain a single object, but
it also contains all the objects that belong to this object. The graphical
objects, which an object consists of, are called submorphs and are serialized
with the part, as well as all non-graphical objects that are reachable from
these objects and can be serialized. Some objects are excluded or handled
specially. The implementation of our serialization approach is discussed
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Figure 3.5: Screenshot of the PartsBin browser with ObjectEditor selected
from the Tool category

in Section 5.2. A serialized part is published under a unique name in a
parts space. Additional meta-information and a preview of that part are
stored separately. By publishing a part, a new revision is created so users
can revert changes as needed. All the parts are stored in a parts bin and are
grouped in parts spaceswhich also provide a name-space and are used for
categorization, too. The development tools provided by the environment
are user-editable objects just as well and are stored in the parts bin, too.
They can range from a simple ColorChooser to complex tools such as an
ObjectEditor. The screenshot in Figure 3.5 shows the Tools part space in
a parts bin with the ObjectEditor selected and its details.
Figure 3.4 presents the workflow of using a parts bin for collaboration. A

user can decide to publish a part P1 from world 1 (1) in a central repository.
The published part can then be cloned by a second user (2) and can be used
and modified in world 2 (3). When the second user decides to share the
adaptation, the part can be published either under a new name P2 (4a) or in
the original location using the same name (4b). By creating a new version,
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the repository ensures that old revisions are still accessible and changes
can be undone.

3.3 Scoped Behavioral Adaptation with
Development Layers

Not all features of the development environment can be represented as
individual and exchangeable graphical parts that can be cloned to safely
work on them (as discussed in the previously section). There is a base system
in Lively Kernel that is implemented in a standard class-based way. The
base behavior of all morphs, shapes, widgets, or the world are implemented
as classes. To implement features that should affect not only an individual
morph, but allmorphs of a specific kind at once, the adaptation of individual
graphical objects as presented in the previous sections is not sufficient.
To address this problem, we use context-oriented programming (COP) as

a means to context-specifically adapt behavior at run-time. In this section
we show how to employ COP in the process of evolving self-supporting
development environments. Putting COP to work, programmers do not
modify the core classes and methods directly, but use COP layers instead.
Layers can be scoped to only affect the behavior of the objects under con-
struction.

3.3.1 Context-specific Behavioral Adaptation in Object
Compositions

Similar to lively parts, layers can be used to refine behavior in a complex
object composition. Unlike the approach presented in the previous section,
layers refine the behavior of classes in a context-specific way. This allows
expressing experimental behavior in form of a layer that can be tested in
a controlled way. A layer can be activated globally, during the extent of a
specific computation (see dynamic scoping in Section 4.4), for individual
objects, or for groups of objects that are part of a domain-specific structure
(see structural-specific scoping in Section 4.5).
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Figure 3.6: Behavioral adaptation in the elephant example implemented
with COP.

Coming back to the elephant example from Section 2.2 and Section 3.2.1,
Figure 3.6 shows how the elephant can be adapted with COP layers. The
behavioral adaptation is implemented as a GlowLayer that refines the class
Brush (1). That layer is then structurally scoped in the elephant object
A and its domain-specific composition hierarchy consisting of the tail B
and its brush C (2). The adaptation that only affects C can be scoped by
(de-)activating the GlowLayer as needed.

The context-specific activation allows developers to experiment with the
elephant’s glowing feature on other elephants. One of the main advantages
is that development layers allow experimenting without modifying the
source code of classes or creating new instances. If needed, the glowing
feature can be removed by deactivating the layer.

3.3.2 Separating Changes in Layers
We use ContextJS [64, 70, 60], our library-based COP extension to JavaScript.
ContextJS is a JavaScript library and that uses method wrappers [15] for
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its implementation. It allows defining behavioral variations to objects and
scoping these in various ways. ContextJS and its open implementation of
layer composition will be discussed in chapter 4. An overview of ContextJS
syntax and semantics is provided in Section 4.3.
Below we look at an example of an EventCounter that should represent

code from the base system. An anonymous object with the attribute n
and a function count, which gets an event evt as argument, is created
and assigned to the global variable EventCounter. JavaScript does not
distinguish between state and behavior and represents both, attributes and
functions, as named properties of objects.

EventCounter = {
n: 0,
count: function(evt) {
this.n = this.n + 1;

}
}

Due to its reflective capabilities, objects and behavior can be
changed at any time in JavaScript. If this EventCounter is used
by tools in a self-supporting development environment, changing it
can be dangerous. If developers are interested in which events
are counted, they can add an alert statement to the count method.
The alert statement can be used to display values to the user:

EventCounter.count = function(evt) {
alert("evt: " + evt);
this.n = this.n + 1;

}

But this might instantly bring the system to a halt if the EvenCounter is
used by tools, because of the potentially many alerts that might get sent
on every user interface event. The problem here is not that the adapted
code is erroneous, it just dynamically uses resources of the environment in
a unexpected way. By using COP and defining the new behavior in a layer,
the problem can be circumvented as follows:
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cop.create("DevLayer").refineObject(EventCounter, {
count: function(evt) {
alert("evt: " + evt);
this.n = this.n + 1;

}
})

The layer overrides the original behavior without proceeding to the base
behavior. Since we do not add a new crosscutting concern here, but work on
the basemethod source, there is no need to proceed to other partial methods
of the layers or the base system. A version that would use ContextJS’s
proceed looks as follows:

cop.create("DevLayer").refineObject(EventCounter, {
count: function(evt) {
alert("evt: " + evt);
return cop.proceed(evt);

}
})

That version ensures that original method can be adapted. Hence, the
layer does not include an outdated version of the code, but calls the original
code with its proceed statement. Nevertheless, the first version is useful for
experimenting with the complete original source code.

3.3.3 Scoping Layer Activations
To actually affect the system, the DevLayer1 can be activated in a certain
scope in various ways, just as needed. The standard mechanism in COP is
dynamic scoping:

cop.withLayers([DevLayer], function() {
// a call of EventCounter.count() in this scope
// will execute the new behavior in DevLayer

})

In interactive environments, most control flows are triggered by events.
Other scoping mechanisms, such as instance-specific and structural scop-
ing [64], are better suited to activate the new behavior. Figures 3.8 and 6.4
demonstrate such layer activations.

1cop.create creates the layer and assigns it to a global variable
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Figure 3.7: A layer that is used during the development and visualizes
move events of the mouse. The layer is globally activated. When the mouse
is moved over any object including the workspace with the code, the red
rectangles are shown.

Figure 3.8: The ShowMouseMoveLayer, which is defined in the right
workspace, is only activated for the yellow rectangle on the left. The layer is
structurally scoped by activating the layer for the DebugArea.
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If developers are satisfied with new behavior, they might want to apply
it to the whole environment. They can do so by activating the layer globally.
If they discover an error they can still deactivate the layer and fall back on
the old behavior.

DevLayer.beGlobal(); // -> activate layer for all objects, even the tools
DevLayer.beNotGlobal(); // -> deactivate layer if necessary

In Lively Webwerkstatt the layers can be used during development to
restrain the effects of debugging code. Figure 3.7 shows how code was
added to the base system to see where mouse move events are fired.
Adding such debugging code to core behavior can be problematic, as it
also affects tools such as the workspace. Figure 3.8 shows how using the
ShowMouseMoveLayer and structural scoping mechanisms such adaptations
of the base system can be restrained, so that the debugging behavior is
only active for some specific objects in the system (in that case the yel-
low rectangle called DebugArea). The layer is structurally scoped by using
setWithLayers on a graphical object containing other objects. This scoping
mechanism is not a general one, but a domain-specific layer composition in-
troduced by the Morphic framework. The implementation of such domain-
specific scoping is discussed in Section 4.2. Once the layer is activated
structurally for the DebugAreamorph, it is active for all its submorphs, too.
For the general workflow in self-supporting systems this means that

COP layers can be used as a scaffolding during development, so that tools
are temporally separated from the things they work on. Figure 3.9 shows
how development layers can break up the reflective dependencies in an self-
supporting development environment (1). Even though the tools needed
to adapt the system depended on base system behavior like classes, they
are not affected by their own changes (2), because the DevLayer that refines
class behavior is only active for the objects under development. The new
behavior can be tested in a scoped way (3) and, if desired, it can be activated
immediately for the entire system. Finally, the new layer can be stored
back to the server (4) so that other users can also experiment with the new
feature.
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By composing behavioral adaptations at run-time, the source code of
the base system is not permanently changed. If necessary, the layer can be
refactored and merged into the classes of the base system [66].

3.4 Combining Parts and Layers
This sections discusses how parts and layers can be shared across different
LivelyWikis and how both approaches can be combined, but are not unified
yet.

3.4.1 Sharing Parts and Layers across Lively Wikis
The development with lively parts and development layers is not limited to
one shared repository. Even though, Lively Webwerkstatt uses one central
repository for storing modules, worlds, parts, layers and other content, the
development of code and objects is not limited to one Lively Wiki instance.
Since classes and layers are stored as modules in plain text files, they can be
copied and merged and handled with standard source control tools such
as GitHub 2.
Lively worlds and parts are stored in a special serialization format that

will be described in Section 5.2. Because of that they cannot be meaning-
fully managed using standard text-based tools. But as every Lively Wiki
can deserialize and handle them on an object level, worlds and parts can
be exchanged across wikis. Since object identities are unique and their
derivation history is stored in the object, worlds and parts are not bound
to one repository. Parts can, for example, be directly copied via the Web-
browser and pasted in another World running on a different server via the
Web-browser’s clipboard paste command. They require a compatible base
system that provides the classes needed for deserializing the objects. Since
parts contain their own behavior, complete applications or tools can be
transfered using that technique.

2https://github.com/LivelyKernel/LivelyKernel/
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3.4.2 Unifying Parts and Layers
COP layers are very powerful and generalmeta-programming tools. Besides
being useful for adapting the base system, they can also be used to adapt
graphical objects. But unlike the direct manipulation and free editing
with lively parts, COP layers refine only behavior and cannot be used to
interactively modify object state. Since cloning of tools cannot be used to
adapt the base system, a technique like development layers is inevitable for
a safe and stable development environment.
Lively parts and development layers serve similar purposes in

Webwerkstatt: they make self-supporting development safer and allow
exchanging objects and features between different worlds and users. But
they remain different approaches. Finding a unified approach for program-
ming in a self-supporting, collaborative development environment that
spans both end-user-like programming and system development remains
future work.

3.5 Summary
In this chapter we have presented Lively Webwerkstatt and two approaches
that help to make tool adaptation in a self-supporting, collaborative de-
velopment environment safer. In Webwerkstatt, all graphical tools used
for development are implemented as user-modifiable lively parts. Cloning
tools before adapting them will prevent them from breaking themselves
and the environment around them.
We further have shown how COP layers can be applied as development

technique to isolate changes to the base system during development. In-
stead ofmodifying classes directly at run-time, changes are applied to layers
that can then be scoped to specific parts of the system. With these layers
new features can be tested with less risk of breaking the system during this
test phase. Once they meet the developers’ needs, layers can be applied to
other parts of the system, activated globally and shared with other users in
the collaborative development environment.
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4 ContextJS
Scoped behavioral variation can serve as scaffolding that support a safer
tool adaptation in self-supporting development environments. As discussed in
Section 3.3, layers of context oriented programming [42, 21] (COP) are suited to
capture and scope changes as needed to prevent breaking the development
environment while evolving it from within itself. For the development
in Lively Webwerkstatt, we developed ContextJS [4, 64], our JavaScript
language extension for COP and an open implementation of COP layer
composition.
In this chapter we introduce COP and present dynamic layer scoping as

its default means to restrict behavioral variations to the dynamic scope of
method executions. To exemplify this, we present use cases that needed
alternative scoping mechanisms. Since new scoping mechanisms, like
structural-specific scoping, are domain-specific, we propose to allow frame-
work developers to specify them with an open implementation. We discuss
global, dynamic, and structural-specific scoping and apply them in the
earlier presented examples.

4.1 Scoping of Layer Activations
COP extends object-oriented programming by providing dedicated lan-
guage abstractions for defining and composing variations to basic program
behavior. Behavioral variations are encapsulated by layers, modules that can
crosscut classes (or depending on the implementation also objects). Layers
can be dynamically de-/activated—and composed with other layers—for
the dynamic extent of a code block. This mechanism allows scoping be-
havioral variations to specific control flows. They are an encapsulation
mechanism orthogonal to object-oriented decomposition. This meets the
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Figure 4.1: Method kinds and sideways composition in COP

nature of behavioral variations, whose implementation often affects various
parts of a system and cannot be encapsulated by a single object.
In this section, we present examples for which we employed COP and

discuss the benefits of layer-based adaptation. While COP is helpful for
control flow driven use cases, existing dynamic scoping mechanisms are
not applicable to interactions not centered on control flow. We discuss the
inapplicability of existing layer activation mechanisms and the need for
alternative specifications.
In the COP execution model, a statement’s semantics depends upon

the context in which it is evaluated. Behavioral variations, such as vari-
ations of method executions, become explicit concepts in COP. Typically,
context-specific behavior requires adaptations at several points in a system,
constituting its implementation as a crosscutting concern [84]. Behavioral
variations are defined within a layer allowing for the modularization of
functionality that would otherwise be scattered over an object-oriented
decomposition. As discussed in Section 3.3, we use layers as a means to
make development in a self-supporting system more safe.
Depending on the language’s features, behavioral variations are imple-

mented by partial method, function, and/or class definitions that encapsulate
context-specific functionality; we will focus on partial method definitions.
Figure 4.1 (left) illustrates two classes defining partial methods. In COP,
layered methods consist of a base method definition and at least one partial
method definition. The base method is executed when no active layer pro-
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vides a corresponding partial method. Layers do not affect the execution of
plain methods, which are methods that have no partial definition.
Layers can be activated and composed with others at run-time. Therefore,

the object-oriented method lookup, which is based on a method’s signature,
its object, and inheritance rules, is extended with a sideways lookup that
considers partial method definitions of active layers. This layer-aware
method lookup is also denoted as sideways or layer composition.
In a layer composition, multiple layers may provide partial definitions

of the same method. In that case, a partial method can proceed to the next
partial definition in the composition, or, if none exists, to the base method
definition. When activated, layered method calls are dispatched to the
partial method provided by the layer. Partial methods can be executed
before, after, or around the base method definition. Figure 4.1 (right) shows
a method dispatch of A.m1 while layers L2 and L1 are active. Given that
the partial methods proceed with the call, the partial method L2 is called
before L1 and the base definition.
Although COP does not prescribe a certain implementation strategy, most

of the COP implementations described in literature scope layer activations
to the dynamic extent of a block of statements [21, 41, 5, 4]. Formany control-
flow driven applications, dynamic extent-based layer composition is an
appropriate mechanism. However, behavioral adaptations in general can
also depend on scopes other than the control flow, such as a dynamic object
structure or object state. Having conducted several case studies in which
we applied COP to various projects [71, 59] to Lively Kernel [50] and Lively
Webwerkstatt as discussed in Section 3.3 and Section 6.2, we identified
needs for scoping strategies different from what has been proposed and
implemented so far.

4.1.1 Programming with Dynamically Scoped Layers
An example of programming with dynamically scoped layers is an adap-
tation of an xUnit-like test runner [10] in Lively Webwerkstatt. The test
runner as shown in Figure 4.2 (A) only displays the execution time of entire
xUnit test cases, but no fine-grained execution information of individual
test methods within test cases. A straightforward object-oriented imple-
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D

A B

C

Figure 4.2: Test framework adaptation. (A) The test runner only shows the
execution time of whole test cases. (B) A user adapted the test runner’s
behavior by measuring and displaying the execution time of individual test
methods when a selected test case is run.

mentation would measure execution time whenever a test method is run.
Therefore, the class TestCase, which is responsible for the execution of test
methods, has to be adapted. Since our system contains a large number of
tests, this static solution would decrease performance.
Instead, measuring and displaying results should only be active for the

execution of an explicitly selected test. Figure 4.2 presents a screenshot of
a JavaScript-based unit test tool. Whenever the button Run TestCase (Fig-
ure 4.2 C) of the test runner is pressed, the measurement adaptation should
be activated, displaying the result in a separate window (Figure 4.2 B). Scop-
ing of this feature is needed, because the displaying of individual test-runs
times should be disabled when the test runner executes a batch of tests
(Figure 4.2 D) or when test cases are used for other purposes, e.g. when
executed in the context of other tools.
To address this adaptation of the test runner, COP layers can be em-

ployed. The core behavior of the test framework is implemented in three
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<<Layer>> 
BaseLayer

<<Layer>> 
TimeTestLayer

TestCase

runTest(selector)

<<Layer>> 
TimeEachTestLayer

Object

activeLayers()

<<partial class>> 
TestRunner

runSelectedTestCase()

TestRunner

runSelectedTestCase()

adapts adapts

<<partial class>> 
TestRunner

setResultOf(testObject)

adapts
TestResult

setTimeOfTestRun(selector, time)
getSortedTimesOfTestRuns()

<<partial class>> 
TestResult

timeOfTestRuns

adapts
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Figure 4.3: UML Class Diagram showing the adaptation of Lively Kernel’s
xUnit test framework measuring and displaying the execution of each test
method.

classes: TestRunner, TestCase, and TestResult. As shown in Figure 4.3,
the behavioral adaptation is implemented in two layers: TimeTestLayer
and TimeEachTestLayer. Since time measurement should be implemented
as a separate concern, we do not modify the base method definition of
runSelectedTestCase in the class TestRunner, but define a partial method
in the layer TimeTestLayer as a suitable entry point for the adaptation. To
adapt the test runner behavior for any execution of the Run TestCase button,
we activate TimeTestLayer globally.

Measuring execution times of individual methods is the responsibility of
the class TestCase. Its adaptation is defined in the layer TimeEachTestLayer,
which is dynamically activated in the runSelectedTestCasemethod. Fig-
ure 4.4 shows how the withLayers statement activates TimeEachTestLayer
during the execution of an anonymous function, which is used as a scop-
ing construct. The withLayers statement allows implicitly passing context
information and changing the layered method composition at the moment
the method runTest of the class TestCase is executed. The time each test
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TestRunner: runSelectedTestCase(proceed) {
  withLayers([TimeEachTestLayer]), function() {

proceed()
  })
}

TestCase: runTest(proceed, selector) {
  var start = (new Date()).getTime()
  proceed(selector)
  var time = (new Date()).getTime() - start;
  this.result.setTimeOfTestRun(this.currentSelector, time)
}

TestCase: runTest(selector) {
 ...
}

TimeEachTestLayer

BaseLayer

Dynamical Extent of Layer Activation

TestRunner: runSelectedTestCase() {
...

}

TimeTestLayer

Globally Activated Layer

BaseLayer

Figure 4.4: The refined runSelectedTestCasemethod activates
TimeEachTestLayer and thus refines runTest of the class TestCase for the
dynamic extent of this execution.

method execution takes is stored in an instance of the class TestResult,
which was adapted by adding new behavior and new state as shown in
Figure 4.3.
Our test case adaptation emphasizes an issue of object-oriented adapta-

tion techniques. It requires extensions and refinements of several methods
and fields of the abstract class TestCase. Using plain object inheritance,
the adaptations could be either specified within TestCase itself or in a new
subclass. The former is not desirable with regard to separation of concerns,
since context-specific behavior should not be defined within an abstract
superclass that handles core concerns. The latter requires changes to the
inheritance chains of all concrete test cases, letting them inherit from our
new class. However, we cannot assume to have access to the source code
of all TestCase subclasses; thus, this strategy is fragile. Layers allow more
fine-gained modularization using sideways composition, thereby support-
ing the definition of method refinements and of new methods and state.
Sideways composition extends object-oriented adaptation techniques; it
can be used as a delegation technique preserving object identities, and it
can be applied where subclassing is not suitable.
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connector:LineMorph

startMorph:Morph

endMorph:Morph

startHandle:HandleMorph

endHandle:HandleMorph

world:WorldMorph
owner

owner

submorph

submorph

submorph

submorph

submorph

NodeLayer

NodeLayer

ConnectorLayerstartMorph endMorph

startHandle endHandle

connector

Figure 4.5: AMorphic scene graph of the connector example. Both
startMorph and endMorph have instance-specific NodeLayer activa-
tions. startHandle and endHandle are in the structural scope of the
ConnectorLayerwhich is explicitly activated only in the connector.

4.1.2 Lack of Alternative Scoping Mechanisms
While layers are useful for defining behavioral variations, the existing dy-
namically scoped layer activation is insufficient in situations that require al-
ternative ways of describing scope. A situation that demonstrates this issue
comes up while programming graphical objects using aMorphic [76, 99, 75]
implementation as described in Section 2.2.5.
We use the example of developing a connector to demonstrate the need

for new instance-specific and structural scoping of layer activations. One
example of a simple graphical object in Morphic is a line. Lines can be
moved by dragging their handles, which are small rectangles appearing
at their ends. These handles—children of their corresponding line in the
Morphic scene graph—are instances of the class HandleMorph. This parent-
child relationship, as depicted in Figure 4.5, is an example of how context is
constituted from object structure. In the Morphic domain, the scene graph
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Figure 4.6: First requirement in connector example: connectors should
update themselves when connected morphs change their position.
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Figure 4.7: Second requirement in connector example: dragging a handle
(small rectangle) onto a third morph connects the line to that morph.

structure is embodied by a bidirectional submorphs/owner relationship.
There are other domains that have similar object structures, e. g., parse trees
that may define their object structure in different ways.
Based on Morphic lines, we want to implement connectors. A connector

is a line that graphically connects two morphs.
Our implementation has to consider two requirements. First, when one

of the connected objects moves, the connector should automatically update
its position, as shown in Figure 4.6. Second, a simple line can be moved by
dragging its handle, but a connector line should not only be moved but also
be reconnected when its handle is dragged onto a new morph, as shown in
Figure 4.7.
We considered modeling and implementing this scenario by providing

special kinds of morphs applying basic object-oriented techniques. We
could either have included the new behavior into Morph, which would
have bloated this already large class. Alternatively, we could have sub-
classed Morph and restricted the potentially connectable graphical objects
to instances of this subclass hierarchy.

70



Open Implementation of Layer Composition

Instead, we want to use a layer-based sideways composition of context-
oriented programming [42]. Layers allow us to encapsulate our behavioral
variation without tangling the Morph class declaration and at the same time
avoid unwieldy subclassing. We are convinced that layers are a goodway to
express such class adaptations and to separate them as dedicated concerns.
However, COP’s standard scoping mechanisms are not applicable to our

scenario. First, morphs need to dynamically adapt node behavior when
they are attached to a connector line. Second, handle behavior needs to be
adapted when they belong to a connector; i. e., when they are used in the
context of a line playing the role of a connector.
With standard COP techniques, the respective layers would be activated

upon initiation of the connector’s control flow. However, user interface
events can also influence the handle’s behavior but run in separate control
flows that will not touch the connector and its composition statements.
This behavioral variation is not control flow centric, but rather depends on
specific objects and the structure of the morph object tree (scene graph).
We identified the following new layer activation scopes. First, there is a

need for layer activations depending on a specific object. Second, structural
object hierarchies should be taken into account. Such structural context
information should be used in combination with instance-specific layer
activation to extend scoping to object structures. Our intended behavioral
adaptation should be defined in HandleMorph and activated for handles
when they are submorphs of a connectors, as shown in Figure 4.5 1.

The new scoping strategies require domain specific information about
structural hierarchies and instance-specific activation algorithms. Hence,
we need a flexible implementation of layer activation to suit application-
and domain-specific needs.

4.2 Open Implementation of Layer Composition
As a result of our analysis, we identify new scoping strategies that must
be accessible for application-specific customization. We propose a holis-

1In Lively Kernel, handles are submorphs of the morphs they adjust so that they are
automatically transformed with them. This makes their implementation much easier.

71



ContextJS

tic approach that integrates our new strategies with existing mechanisms.
Our solution is based on an open implementation [56, 58] in which layer
composition strategies are encapsulated in objects. Objects can add other
scoping mechanisms or disable layers completely, by overriding the de-
fault layer composition behavior. This enables developers to implement
domain-specific scoping strategies. The definition of a strategy is optional; a
default implementation provides the original control flow-specific scoping
mechanism.
Moving responsibility for adaptations to objects has some implications.

Layer composition can be late-bound, being computedupon layeredmethod
execution (as opposed to the start of a dynamic extent), which allows for
object-specific adaptation within a control flow. However, providing more
control can also lead to bad design. Theoretically, one could specify a dif-
ferent composition strategy for each object in a system, ending up with an
unwieldy application design. Nevertheless, we found a set of use-cases
for which we believe the benefits of such fine-grained and open adapta-
tion strategies outweigh this drawback. For example, nodes in a tree can
provide behavioral variations depending on their position, i. e., structural
context, affecting (only) their children; objects can be adapted to play a
role independent from their control flow; or specific objects can be closed
against any adaptation by providing an empty layer composition. Our
experiences with our approach so far suggest that implementations of new
scoping strategies require modifications of relatively few classes or objects.
Moreover, few applications will require new adaptation scopes and not
resort to existing ones. The implementation of new layer activation and
composition mechanisms is meta-programming and, therefore, should only
be used where actually needed—specifying scoping strategies should not
be part of a standard development process.

4.3 ContextJS Syntax by Example
ContextJS [64], our COP language extension for JavaScript, is implemented
as a JavaScript library. It allows defining behavioral variations of objects as
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Figure 4.8: Sequence diagram for the layered execution of runTest in a
TestCase

partial methods. In addition, it supports the definition of partial classes for
a library-based class system.
ContextJS allows defining layers that refinemethods of objects and classes.

Since JavaScript is based on prototypical inheritance between objects, classes
are just a convention. The class refinements are, therefore, only syntactic
sugar for refining the class prototype object. ContextJS implements the class-
in-layer strategy [4], in which partial method definitions are stored inside a
layer. Layers are first-class objects and instances of Layer. Defining partial
methods and classes is realized by calling library functions. The methods
refineObject and refineClass of the class Layer take an anonymous object
containing these partial methods as an argument.
The following listing presents a simple example for the usage of

ContextJS:
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1 Object.subclass("MyObject", {
2 m: function(a) {
3 return a * 3
4 }
5 })
6
7 cop.create('LayerA').refineClass(MyObject, {
8 m: function(a) {
9 return cop.proceed(a) + 4

10 }
11 })
12
13 cop.create('LayerB').refineClass(MyObject, {
14 m: function(a) {
15 return cop.proceed(a * 2)
16 }
17 })
18
19 var o = new MyObject()
20 o.m(2) // -> 6
21
22 // Dynamically Scoped Layer Activation
23 cop.withLayers([LayerA], function() {
24 o.m(2) // -> 10
25 withLayers([LayerB], function() {
26 o.m(2) // -> 16
27 })
28 })
29
30 // Global Layer Activation
31 LayerB.beGlobal()
32 o.m(2) // -> 12
33
34 cop.withLayers([LayerA], function() {
35 o.m(2) // -> 16
36 })

The layers LayerA and LayerB provide partial methods for m in class
MyObject. Layers are created using a library function (Lines 7, 13). Their
partial method definitions for m (Lines 8–10, 14–16) make use of the proceed
function to traverse a partial method list at run-time. When m is invoked
with the argument 2without any layer composition, the call is dispatched to
the plainmethod definition that returns 6 (Line 19). The execution of m in the
dynamic extent of an activation of LayerA (Lines 22–23) is first dispatched to
LayerA’s partial definition of m. The proceed expression (Line 9) delegates
the call to the next partial method—in this case, to m’s default definition—
and adds 4 to its result. If several layers are activated, for instance LayerB
within the dynamic extent of LayerA (Line 24), the call is first sent to the
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innermost layer (LayerB) and then (using proceed) passed to the next one.
Besides dynamically scoped layer activation, ContextJS supports global
activation using the beGlobal()method (Line 30). Globally activated layers
are active until they are explicitly deactivated using beNotGlobal().
During execution of refineClass, the corresponding plain method defi-

nition is made layer-aware by replacing it with another function performing
layer composition for that method execution and holding a reference to the
base method definition. This transformation is done by ContextJS automat-
ically. State (properties) in JavaScript objects can also be layered by defining
special JavaScript getter and setter methods in layers2.

4.4 Globally and Dynamically Scoped Layer
Activation

In our library, objects can respond to the message activeLayers to compose
layers and return a list of active layers. Layer composition is only performed
upon method lookup for layered method definitions, so activeLayers is
only called for a subset of all method invocations. Plain method definitions
are not affected. Layering of the activeLayersmethod itself is prohibited,
since it would lead to infinite regress. The sequence diagram in Figure 4.8
illustrates a call of activeLayers in the invocation process of an adapted
runTestmethod.
In the following, we present the implementation of COP’s original scoping

mechanisms. Our approach covers standard context-oriented scopingmech-
anisms such as global and dynamically scoped layer activations. The listing
below presents an implementation of dynamically scoped layer activation.
We use the variable LayerActivationStack to keep track of dynamically
scoped layer activations3. The second variable, GlobalLayerActivations,
stores the list of globally active layers. The implementation of activeLayers
uses the composeLayers algorithm that recursively composes the layer acti-
vation stack and the global activations into an ordered list.
2see 11.1.5 Object Initialiser in ECMA-262 [29]
3In multi threading environments such as Smalltalk or Java, this variable has to be thread-
local, so that different threads will not interfere with each other’s layer activations.
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1 LayerActivationStack = []
2 GlobalLayerActivations = []
3
4 Object.addMethods({
5 activeLayers: function() {
6 return composeLayers(LayerActivationStack.length - 1)
7 }
8 })
9

10 function composeLayers(index) {
11 // 1. Global Layer Activations
12 if (index < 0) {
13 return GlobalLayerActivations
14 }
15 var activation = LayerActivationStack[index]
16 var layerComposition = composeLayers(index - 1)
17 // 2. Dynamic Layer Activations
18 if (activation.withLayers) {
19 // reject duplicate layer activations
20 layerComposition = layerComposition.reject(function(eachLayer) {
21 return activation.withLayers.include(eachLayer)})
22 return layerComposition.concat(activation.withLayers)
23 }
24 // 3. Dynamic Layer Deactivations
25 if (activation.withoutLayers) {
26 layerComposition = layerComposition.reject(function(eachLayer) {
27 return activation.withoutLayers.include(eachLayer)})
28 return layerComposition
29 }
30 }

The layer activation stack is created by the two functions withLayers
and withoutLayers presented in the following listing. The list layers is
explicitly (de-)activated for the dynamic extent of the closure func. Globally
and dynamically scoped layer activations are available in ContextJS by
default for all objects.

31 function withLayers(layers, func) {
32 LayerActivationStack.push(
33 {withLayers: layers})
34 try {
35 func()
36 }
37 finally {
38 LayerActivationStack.pop()
39 }
40 }
41
42 function withoutLayers(layers, func) {
43 LayerActivationStack.push(
44 {withoutLayers: layers})
45 try {
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46 func()
47 }
48 finally {
49 LayerActivationStack.pop()
50 }
51 }

The list of globally active layers stored in the global variable
GlobalLayerActivations can be managed by the two methods beGlobal
and beNotGlobal. These functions ensure that a layer cannot be globally
activated twice.

52 Layer.addMethods({
53 beGlobal: function() {
54 if (cop.GlobalLayers.include(this)) return;
55 cop.GlobalLayers.push(this);
56 },
57 beNotGlobal: function() {
58 var idx = cop.GlobalLayers.indexOf(this)
59 if (idx < 0) return;
60 cop.GlobalLayers.removeAt(idx);
61 }
62 })

4.5 Instance-specific and Structural Layer
Activation

In Section 4.1.2 wemotivated the need for new scopingmechanisms to lever-
age COP to new application domains, such as graphical object structures in
Morphic. Contrary to the two scoping strategies mentioned above, struc-
tural and instance-specific scoping cannot be implemented in a generic way
but require domain specific modifications. To demonstrate the flexibility of
our open implementation, we implement these new scoping strategies for
our Morphic scenario.
To change layer scoping for all graphical objects, we implement a

new composition mechanism in class Morph. The implementation of
instance-specific layer activation is straightforward: morphs provide a fixed
layer composition that is returned when activeLayers is called. The list
of layers is managed using accessors (get|set|add|remove)WithLayers.
The following listing shows the implementation of activeLayers and two
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accessor methods for the Morph class.

1 Morph.addMethods({
2 // object-specific layer composition
3 activeLayers: function () {
4 return this.getWithLayers()
5 },
6 // accessor methods
7 getWithLayers: function() {
8 if (! this.withLayers) return []
9 return this.withLayers

10 },
11 setWithLayers: function(layers) {
12 this.withLayers = layers
13 },
14 // other accessor methods such as addWithLayer, removeWithLayer are omitted here
15 // ...
16 })

Instance-specific layer activation can be extended to consider structural
information of object graphs; in our case, the submorphs-owner relationship
within a scene graph. The method structuralLayers of the next listing
recursively walks up the owner hierarchy (as shown in Figure 4.5) and
collects all instance-specific layer activations. To prevent multiple execution
of a partial method, the algorithm also ensures that—like in the dynamically
scoped layer activation—a layer is included only once in the result (Line 7).
Since this implementation of structural layer activation subsumes instance-
specific layer activations, we implement activeLayers for all graphical
objects that allow using both strategies.

1 Morph.addMethods({
2 structuralLayers: function () {
3 var layers = this.getWithLayers()
4 if (this.owner) {
5 var ownerLayers = this.owner.structuralLayers()
6 // reject duplicate layer activations
7 return layers.concat(ownerLayers.reject(
8 function(eachLayer){return layers.include(eachLayer)}))
9 }

10 return layers
11 },
12
13 activeLayers: function () {
14 return this.structuralLayers()
15 }
16 })
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Figure 4.9: Order strategies for different layer composition kinds.

The scoping strategies presented above allow us to implement the con-
nector example as described in Section 4.8.2. To fully support the default
and new scoping mechanisms we have to combine them during layer com-
position.

4.6 Composition of Layer Activation Strategies
Each layer activation strategy can produce a layer specific composition.
When these are used in combination, we need precedence rules. These
rules can also be implemented in the activeLayersmethod, which we will
exemplify in the following. The next listing shows a combination of (the
default) dynamic extent-based scoping with structural (and therefore also
instance-specific) scoping. It includes dynamic and global layer activation
mechanisms into one composition.
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1 Morph.addMethods({
2 activeLayers: function () {
3 var defaultLayerActivations =
4 composeLayers(LayerActivationStack.length - 1)
5 var structuralWithoutDefaultLayers = this.structuralLayers().reject(
6 function(eachLayer){
7 return defaultLayerActivations.include(eachLayer)})
8 return defaultLayerActivations.concat(structuralWithoutDefaultLayers)
9 }

10 })

If differently scoped layers do not refine the same method, the execution
order does not need any further modification. Semantic conflicts occur if
a method is layered by dynamically and globally activated layers at the
same time. In this case, we need precedence rules avoiding ambiguities.
The precedence rule applied in our example proceeds from structurally
activated layers to dynamically and globally activated layers, as depicted in
Figure 4.9 (B).
The implemented layer composition should provide developers with a

coherent metaphor to better understand the layering behavior. Dynami-
cally scoped layer activation follows a stack-like discipline [21]; the stack
metaphor as shown in Figure 4.9 (A) can be stretched to include global layer
activations as well:

1. The base layer (every class andmethod not in a layer) lies at the bottom
of the stack,

2. global layer activations come next,

3. dynamically scoped layer (de-)activations are pushed onto the top.

In this layer composition strategy, dynamically scoped layer deactiva-
tions can override global layer activations; i. e., globally activated layers
can be deactivated by the dynamically scoped withoutLayers. However,
depending on the application, other ordering rules may be required as
well. Depending on the domain, it may make sense to change the layer
composition so that dynamic layer (de-)activations come after the instance
specific and structural layer (de-)activations as shown in Figure 4.9 (C).
Thus, we found no general domain-independent solution for composition
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Figure 4.10: Micro-benchmark results of various ContextJS activeLayer
implementations. The chart displays the execution time of the various layer
scoping mechanisms relative to the execution time of an empty activeLayer
method; higher numbers are worse.

ordering. Instead, we allow developers to change the default ordering for
their application-specific needs.
By default, classes in ContextJS are open to layered adaptations. Con-

textL [21], the first COP language, prohibits default adaptation but requires
classes to be declared adaptable. ContextJS provides the inverse feature and
uses the open implementation to explicitly declare a class as non-adaptable.
This encapsulation can be achieved by implementing an empty layer com-
position. Therefore, a class or object can override the activeLayersmethod
to return an empty list, with the consequence that its methods are executed
without any adaptations. The decision to move the layer composition into
objects hands back control over their method dispatch to them: a context
can still change its behavior, but only if the class or object controls its own
adaptation.

4.7 Performance Observations
Language support for dynamic adaptation requires additional lookups at
run-time, which affect performance. To measure the actual overhead of
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layered method definitions, we adopted a set of COP micro-benchmarks [4].
We ran the benchmarks on a MacBook Pro equipped with MacOS X 10.6.4,
4GB RAM, and 3.06GHz Intel Core 2 Duo. We used Google Chrome (Dev
5.0.375.99) since it supported the fastest JavaScript engine at the time of
measurement4.
In the benchmark, we activate zero to five layers with the different layer

activationmechanisms andmeasure their execution time. All layers provide
a partial definition for a method m and proceed to the next layer.
The execution of m is applied in a loop for two seconds to avoid startup

noise within the measurement. Based on these data, we compute the ratio
of executions per millisecond. The results are shown in Figure 4.10 as a
chart of performance overheads of various layer activation mechanisms
relative to an empty activeLayer method. The absolute results of each
benchmark are the layered method executions per time (ops/ms), which
are compared relative to the method execution of an empty activeLayers
method which produced approximately 2,000 ops/ms. As shown in the
table in Figure 4.10, a method with an empty method body executes ap-
proximately 70,000 ops/ms. This relatively high number of operations is
a result of aggressive optimization techniques applied to the JavaScript
compiler.
In addition to the naïve plain-method-based implementation, we imple-

mented the benchmark using method wrappers provided by the prototype.js5
library. It supports the definition of methods that can be wrapped around
any other method, much like partial methods. Since method wrappers
make similar use of meta-programming and are a commonly used for
run-time behavioral adaptation they should be a fair reference point. The
wrapper implementation produces approximately 500 ops/ms and with
that is four times slower than an empty activeLayers but still faster than
our layer activation mechanisms.
We can see that there is a considerable performance overhead in meth-

ods adapted by ContextJS. The performance of these methods decreased
when no layer is activated and further decreases with each additional layer

4Since the micro-benchmark results depend on the performance of JavaScript virtual
machines, our results might vary on different Web-browsers.

5http://www.prototypejs.org/ (version 1.6)
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activation. The performance of structural layer activation depends not only
on the number of active layers as shown in the 5th group of the chart in
Figure 4.10. It is also affected by the depth of the owner hierarchy (see the
4th group) that has to be traversed even if no layer activations are even-
tually found. Our benchmarking results show the need for performance
improvements in future work. They can be realized by refactoring the layer
activation methods to use less expensive expressions. Replacing recursion
with iteration, collection functions with for loops and introducing caching
techniques would probably speed up our implementation.
However, these performance overheads of using ContextJS only affect

the performance of refined methods. This differs from other approaches to
adaptation such as library-based AOP implementations for JavaScript [119]
that wrap every method. These approaches slow down the whole system
by a factor of five even when AOP features are not used. In our approach,
plain method definitions are executed at full speed, so it depends on the
usage of ContextJS how the performance of real programs is affected.

4.8 Scoping Behavioral Adaptations in Lively
Webwerkstatt

This section shows how the examples from Section 4.1.2—the test runner
adaptation and connectors—can be implemented using the various scoping
mechanisms provided by ContextJS.

4.8.1 Test Runner Adaptation
In the following, we present a ContextJS-based adaptation of Lively Kernel’s
test runner. Its base implementation does not measure the execution time of
test cases and individual test runs. This execution time should not be logged
every time a test case is executed, but only when it is part of a single test
run. The execution of each test is the responsibility of the class TestCase;
without COP, context information would have to be passed (as parameters
or in instance variables) to many test cases and their test methods. With
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ContextJS, the desired behavior can be modeled as dynamically scoped
layer activation.
For the implementation, we first separate the time measurement and

logging concern from the remaining test runner implementation into a
layer.
Second, we scope the new layer that should only be active when a user

explicitly selects and executes a single test.
The actual behavioral adaptation is defined in layer TimeEachTestLayer.

As shown in the (extended) class diagram in Figure 4.3, the layer refines
the classes TestCase, TestResult, and TestRunner,

• adapting existing behavior such as the runTest method in class
TestCase,

• adding new methods such as getSortedTimesOfTestRuns in the class
TestResult, and

• adding new state such as the property timeOfTestRuns also in the
class TestResult.

1 cop.create("TimeEachTestLayer");
2
3 // we do not adapt existing behavior in TestResult
4 // but store our interim results there
5 TimeEachTestLayer.refineClass(TestResult, {
6
7 setTimeOfTestRun: function(selector, time) {
8 if (!this.timeOfTestRuns)
9 this.timeOfTestRuns = {};

10 this.timeOfTestRuns[selector] = time;
11 },
12
13 getSortedTimesOfTestRuns: function() {
14 var times = this.timeOfTestRuns
15 if(!times) return;
16 var sortedTimes = Object.keys(times).collect(function(eaSelector) {
17 return [times[eaSelector], eaSelector]
18 }).sort(function(a, b) {return a[0] - b[0]});
19 return sortedTimes.collect(function(ea) {return ea.join("\t")}).join("\n")
20 }
21 });
22
23 TimeEachTestLayer.refineClass(TestCase, {
24 runTest: function(selector) {
25 var start = (new Date()).getTime();
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26 cop.proceed(selector);
27 var time = (new Date()).getTime() - start;
28 this.result.setTimeOfTestRun(this.currentSelector, time)
29 },
30 });
31
32 // after executing all test methods the test runner sets its final result
33 // we use this hook to display our result
34 TimeEachTestLayer.refineClass(TestRunner, {
35 setResultOf: function(testObject) {
36 cop.proceed(testObject);
37 var msg = "TestRun: " + testObject.constructor.type + "\n" +
38 testObject.result.getSortedTimesOfTestRuns();
39 WorldMorph.current().setStatusMessage(msg, Color.blue, 10);
40 },
41 })

Since TimeTestLayer refines only the method runSelectedTestCase
and that adaptation should be active for every execution of
runSelectedTestCase, we can safely activate this layer globally. The
runSelectedTestCase adaptation’s purpose is to activate the layer
TimeEachTestLayer in the dynamic extent of the proceed statement (Line 8
in the following listing).

1 cop.create("TimeTestLayer")
2 TimeTestLayer.beGlobal()
3
4 TimeTestLayer.refineClass(TestRunner, {
5
6 runSelectedTestCase: function() {
7 cop.withLayers( [TimeEachTestLayer], function() {
8 cop.proceed()
9 })

10 }
11 })
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The layered method execution of runTest is shown in the sequence dia-
gram of Figure 4.8:

1. Only those methods that have behavioral adaptations are instru-
mented, so the execution of most methods in a system is not affected.

2. Before executing the actual method, the object
computes the active layers for that message send
(TimeEachTestLayer, TimeTestLayer, BaseLayer).

3. Partial methods can be traversed with proceed statements.

4. The globally activated TimeTestLayer does not define a partial
method for runTest (see Figure 4.3), so it is ignored and the partial
method proceeds directly to the base implementation of runTest.

The test runner example demonstrates the usage of two default layer
activation strategies: global activation and dynamically scoped activation.
The following example shows how the new scoping mechanisms can be
used.

4.8.2 Connector
We have motivated the need for a new instance-specific layer scoping mech-
anism by developing a connector line for two graphical objects (morphs)
that is updated when one of the morphs moves (as shown in Figure 4.6). We
have shown an implementation of such scoping mechanisms in Section 4.5.
To demonstrate the usage of instance-specific scoping mechanisms for mod-
eling node and connector roles with layers, we implement the example in
Lively Kernel.

Instance-specific Layer Activation First, we define NodeLayer, which
adapts the method change of class Morph (see Figure 4.11). Each node
knows its connectors and updates them when moved. The connector role
is also modeled as a layer that adds a new updateConnectionmethod used
by the nodes.
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Core Connector

<<partial class>> 
HandleMorph

onMouseUp(evt)
connectToMorph(newMorph)
isStartHandle()
isEndHandle()

Morph

activeLayers()
changed()
...

owner
submorphs
withLayers changed()

updateConnectors()
connectLineMorph(morph)
deconnectLineMorph(morph)

<<partial class>> 
Morph 

HandleMorph

adapts

adapts

setupConnector()
updateConnection()
....

startMorph
endMorph

<<partial class>> 
LineMorph LineMorph

2 adaptsowner

submorphs

connectors *

0..2

<<Layer>> 
NodeLayer

<<Layer>> 
ConnectorLayer

Figure 4.11: Adaptation of classes of the Lively Kernel base system in the
connector module.

1 NodeLayer.refineClass(Morph, {
2 changed: function() {
3 cop.proceed()
4 this.updateConnectors()
5 },
6 updateConnectors: function() {
7 this.connectors.each(function(ea) {
8 ea.updateConnection()
9 })

10 },
11 ...
12 })
13
14 ConnectorMorphLayer.refineClass(LineMorph, {
15 updateConnection: function () {
16 // ... algorithm that computes
17 // new start and end position
18 },
19 ...
20 })
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The actual instance-specific layer activation, which lets a LineMorph
dynamically play the role of a connector, is activated by using the
setWithLayersmethod, which associates a list of layers with an instance.
The same construct is used to let other existing instances of Morph, such as
rectangles, ellipses, or text fields, play the orthogonal role of a node. This
instance-specific layer activation is used in the method connectToMorph
(Line 33) when the connector is linked to a new morph that takes on the
role of a node.

21 var connector = Morph.makeLine([pt(0,0), pt(100,0)], 1, Color.black);
22 connector.setWithLayers([ConnectorLayer]);
23 connector.setupConnector();

Structural Layer Activation The second problem is the behavioral vari-
ation that should be active when handles are part of a connector: when
dragged onto a new morph, handles should reconnect the connector to that
morph (as shown in Figure 4.7). The adaptation of the class HandleMorph
consists of an adaptation of the onMouseUp event handler and the addition
of helper methods:

24 ConnectorLayer.refineClass(HandleMorph, {
25 onMouseUp: function(evt) {
26 this.connectToMorph(this.findMorphUnderMe())
27 return cop.proceed(evt)
28 },
29 connectToMorph: function(newMorph) {
30 var connector = this.owner
31 if (newMorph) {
32 newMorph.setWithLayers([NodeMorphLayer])
33 newMorph.connectLineMorph(this.owner)
34 }
35 // ... update startMorph and endMorph
36 },
37 ...
38 })

Since handles are a part of the graphical structure of the LineMorph con-
nector, as shown in Figure 4.5, we can make use of the new structural
scoping mechanisms defined in Section 4.5. The behavioral variation of the
class HandleMorph can be defined in the layer ConnectorLayer. The handle’s
owner is a LineMorph object; thus, the handle is in the connector’s structural
scope.
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4.9 Summary
In this chapter, we have motivated the need for additional scoping
strategies—instance-specific and structural scoping—and have proposed
an open implementation for COP layer composition. Often behavioral varia-
tions cannot be adequately represented using plain object-oriented language
features. Their crosscutting and dynamic nature demands alternative en-
capsulation and scoping mechanisms. COP meets these requirements by
providing layers as an encapsulation mechanism orthogonal to objects, and
as a control flow-specific scoping strategy. ContextJS, our COP extension
to JavaScript offers an open implementation allowing developers to define
domain-specific scoping strategies. We have shown how we can apply
ContextJS’s layer definition and novel scoping mechanisms in Lively Kernel
to adapt tools.
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5 Implementation
This chapter presents selected aspects of the implementation of
Webwerkstatt [72]. It shows how tools are implemented at the same level
as user objects. Since JavaScript does not natively support full object per-
sistence, we developed our own serialization approach and discuss it by
analyzing object representation at different levels. When users change and
share objects directly without working at a textual source code level, collab-
oration tasks like comparing and merging have to be implemented at the
object level.

(1) ElephantMorph 
Material / User Content

(2) PaintToolMorphs

(3) BrushMorphs

Figure 5.1: Screenshot of the PaintTheElephant application based on the
Elephant and PaintToolmetaphor from Section 2.2
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(3) the new random color behavior is
     implemented by overriding "getFill" 
     object-spefically

(2) selecting E in the Halo opens the ObjectEditor

(4) adding a label by dropping a textMorph into PaintTool

(5) Renaming the tool 
      before publishing

(1) Halo

Figure 5.2: Adapting a PaintToolwhile using the PaintTheElephantApp

5.1 Implementation of Tools in Webwerkstatt
All development tools in Lively Webwerkstatt are built in a self-supporting
way. Standard tools like the ObjectEditor, PartsBin, Inspector, Workspace
andmore Lively-specific tools like the SerializationInspector are all built
in similarways and share both the benefits and problems of being developed
in a self-supporting development environment.

5.1.1 Tools and Materials
Since all these tools are too complex for a detailed discussion, we use the
Elephant object from Section 2.2 to discuss implementation details of using
morphs for representing user content and tools alike. Figure 5.1 shows
the Elephant being modified by a PaintTool in a simple but complete
application: the user can become creative in coloring the individual body
parts of an elephant. The application consists of an ElephantMorph (1) and
several PaintToolMorphs (2). When the paint tool is dragged over a morph,
this morph takes the color of the tool’s brush. Both the elephant, as user-
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created content, and the paint tool are implemented as morphs, allowing
users to adapt application content and tools the same way.
This scenario also illustrates that the distinction between tools and mate-

rials can be relative: the paint tool’s BrushMorph (3) can paint every morph
and, therefore, it can also paint other BrushMorphs, since the tool and ele-
phant both use brushes (as discussed in Section 2.2). The BrushMorph stands
only for the many other objects in the system that are used by the user ap-
plication and by system tools likewise. Like many tools in self-supporting
development environments, where such reflective manipulation is possible,
the programmer of the tool has taken care that it does not accidentally paint
itself. But it can paint other brushes without a problem. This example
just changes the color of objects and a badly chosen color rarely prevents
developers from continuing to work in the system. This danger becomes
more apparent when the tool changes object state and behavior, as, for
example, the ObjectEditor does.

5.1.2 Workflow of Adapting a Tool
Figure 5.2 shows the workflow of adapting a tool in Webwerkstatt. The
adaptation of objects starts by opening a halo (1). A halo, as known from the
Squeak Etoys [39] Morphic user interface, allows selecting deeply nested
objects and to modify them directly. Individual halo buttons allow users
to grab (G), drag (D), resize (R), transform (T), copy (C), and delete (X) the
selected object. The halo further allows opening tools like the object editor
(E), inspector (I), and style editor (S) for the selected object. Less often used
functionality, like publishing an object in the parts bin, is available through
the menu (M). The halo includes also a name input field that can be used to
identify and rename the object. By clicking on the (E) halo button (2), a
fresh ObjectEditor for that object will be opened. The object editor can be
used to create a new script for that object (3). In this example the getFill
method will be overridden, so that every time the object is asked for a fill
color, it will color itself randomly. Now, when the tool asks the Brush for
its color to paint an object, the brush changes its color, resulting in painting
each object with a new random color. To distinguish the new tool from
the standard painting tools, the user first adds a label object to it (4) and
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{
  "id": 0,
  "registry": {
    "0": {
      "submorphs": [],
      "id": "96D4D4E1-94D7-4937-A3DF-8A75788F46C7",
      "shape": {"__isSmartRef__": true, "id": 2},
      "name": "Brush",
      "glow": 0.6,
      "glowDelta": -0.1,
      "_Rotation": 0,
      "_Scale": 1,
      "__serializedLivelyClosures__": {"__isSmartRef__": true, "id": 9},
      "__LivelyClassName__": "lively.morphic.Box",
      "__SourceModuleName__": "Global.lively.morphic.Core",
      "_Position": "lively.pt(750,100)"
      // ....
    },
    "2": {
      "_BorderWidth": 1,
      "_BorderRadius": 0,
      "_Opacity": 1,
      "_BorderStyle": "solid",
      "__LivelyClassName__": "lively.morphic.Shapes.Rectangle",
      "__SourceModuleName__": "Global.lively.morphic.Shapes",
      "_Extent": "lively.pt(20,30)",
      "_BorderColor": "Color.rgb(0,0,0)",
      "_Fill": "Color.rgb(204,153,0)",
      "_Position": "lively.pt(-15,-32)"
    },
    // ...
    "9": {
      "onStep": {"__isSmartRef__": true, "id": 10},
      "reset": {"__isSmartRef__": true, "id": 14},
      "__LivelyClassName__": undefined
    },
    "10": {
      "varMapping": {"__isSmartRef__": true, "id": 11},
      "source": "function onStep() {
          if (this.glow > 1) this.glowDelta = -0.1
          if (this.glow < 0) this.glowDelta = 0.1
              this.glow += this.glowDelta
          this.setFill(new Color(0.8,this.glow, 0))
      }",
      "funcProperties": {"__isSmartRef__": true, "id": 12},
      "__LivelyClassName__": "lively.Closure",
      "__SourceModuleName__": "Global.lively.lang.Closure"
    },
    // ...
    "17": {  /* ... */ },
    "isSimplifiedRegistry": true
  }
}

Figure 5.3: Truncated pretty print of a serialized Elephantmorph showing
10% of the file’s contents, in a format that is not meant for users to read or
edit directly.
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   Object                          Name         ClassName                 Refs Size FullSize 
1  root                            GlowElephant Box                       456  382  16679    
2    submorphs                                  object                    396  25   14490    
3    | 1                           Head         Box                       185  376  6614     
4    | | submorphs                              object                    153  21   5499     
5    | |   0                       LeftEar      Box                       31   363  1120     
6    | |   1                       Nose         Box                       31   363  1114     
7    | |   2                       RightEar     Box                       31   363  1119     
8    | |   3                       RightEye     Box                       30   341  1073     
9    | |   4                       LeftEye      Box                       29   328  1052     
10   | 2                           Tail         Box                       91   393  3555     
11   | | submorphs                              object                    59   5    2406     
12   | |   0                       Brush        Box                       58   413  2401     
13   | |     __serial...Closures                object                    21   58   1099     
14   | |       onStep                           Closure                   10   103  552      
15   | 0                           Foot4        Box                       30   346  1065     
16   | 4                           Foot1        Box                       30   363  1085     
17   | 5                           Foot2        Box                       30   363  1084     
18   | 3                           Foot3        Box                       29   350  1062     
19   partsBinMetaInfo                           PartsBin.PartsBinMetaInfo 31   183  1106     
20     changes                                  object                    22   13   760      

onStep changes 
of brush color over time

Figure 5.4: Object Serialization of elephantmorph

gives the object also a more suitable name by typing into the name field
halo item (5). The new tool will be automatically persisted when the whole
Lively world is saved or when the painting application is (re-)published
in the PartsBin. A developer can also decide to share it individually by
publishing the painting tool alone.

97



Implementation

   Object                         Name  ClassName        Refs Size FullSize Content                       
1  root                           Brush Box              57   405  2381     [object Object]               
2    moved                              boolean          1    4    4        true                          
3    submorphs                          object           1    2    2        []                            
4    id                                 string           1    38   38       58F99AE1-BE19-4D9D-A5E4-163...
5    shape                              Shapes.Rectangle 11   274  420      [object Object]               
6    | _BorderWidth                     number           1    1    1        1                             
7    | _ClipMode                        string           1    9    9        visible                       
8    | _Opacity                         number           1    1    1        1                             
9    | _BorderStyle                     string           1    7    7        solid                         
10   | position                         string           1    20   20       lively.pt(0.0,0.0)            
11   | _Extent                          string           1    22   22       lively.pt(21.8,31.7)          
12   | _BorderColor                     string           1    18   18       Color.rgb(0,0,0)              
13   | _Fill                            string           1    22   22       Color.rgb(204,153,0)          
14   | _Padding                         string           1    22   22       lively.rect(0,0,0,0)          
15   | _Position                        string           1    24   24       lively.pt(-15.2,-32.1)        
16   halosEnabled                       boolean          1    4    4        true                          
17   registeredForMouseEvents           boolean          1    4    4        true                          
18   name                               string           1    7    7        Brush                         
19   eventHandler                       EventHandler     2    72   79       [object Object]               
20   | morph                            string           1    7    7        ref 0                         
21   _ClipMode                          string           1    9    9        visible                       
22   scripts                            object           6    5    149      [[object Object]]             
23   | 0                                TargetScript     5    124  144      [object Object]               
24   |   target                         string           1    7    7        ref 0                         
25   |   selector                       string           1    8    8        onStep                        
26   |   args                           object           1    2    2        []                            
27   |   tickTime                       number           1    3    3        100                           
28   derivationIds                      object           3    9    85       [526A278A-C7E5-4960-87DD-BF...
29   | 0                                string           1    38   38       526A278A-C7E5-4960-87DD-BF7...
30   | 1                                string           1    38   38       0F2EB418-99C8-439D-8BB7-0C8...
31   glow                               number           1    3    3        0.6                           
32   glowDelta                          number           1    3    3        0.1                           
33   prevScroll                         object           1    9    9        [0, 0]                        
34   _Scale                             number           1    18   18       0.9999999999999984            
35   __serializedLivelyClosures__       object           21   58   1097     [object Object]               
36   | onStep                           Closure          10   103  551      [object Object]               
37   | | funcProperties                 object           6    67   196      [object Object]               
38   | | | timestamp                    object           3    69   115      [object Object]               
39   | | | | isSerializedDate           boolean          1    4    4        true                          
40   | | | | string                     string           1    42   42       Sun Sep 07 2014 13:06:46 GM...
41   | | | user                         string           1    12   12       jenslincke                    
42   | | | tags                         object           1    2    2        []                            
43   | | varMapping                     object           2    48   55       [object Object]               
44   | | | this                         string           1    7    7        ref 0                         
45   | | source                         string           1    197  197      function onStep() {\n    if...
46   | reset                            Closure          10   103  488      [object Object]               
47   |   funcProperties                 object           6    67   196      [object Object]               
48   |   | timestamp                    object           3    69   115      [object Object]               
49   |   | | isSerializedDate           boolean          1    4    4        true                          
50   |   | | string                     string           1    42   42       Sun Sep 07 2014 13:06:46 GM...
51   |   | user                         string           1    12   12       jenslincke                    
52   |   | tags                         object           1    2    2        []                            
53   |   varMapping                     object           2    48   55       [object Object]               
54   |   | this                         string           1    7    7        ref 0                         
55   |   source                         string           1    134  134      function reset() {\n    thi...
56   distanceToDragEvent                string           1    23   23       lively.pt(34.0,-31.4)         
57   _Position                          string           1    22   22       lively.pt(-3.7,50.2)          

glow specific 
variables

glow behavior

GlowBrush

Figure 5.5: Object Serialization of Elephant’s Brush Morph
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5.2 Object Persistence in Webwerkstatt
When saving a world or individual objects as parts, we employ our own
custom serialization approach, because JavaScript’s native JavaScript Object
Notation (JSON) serialization cannot serialize general object graphs.
All objects in Lively have to be serialized for copying or persisting them.

The first versions of Lively Kernel (as presented in [50]) serialized all user
content as Scalable Vector Graphics (SVG) that was directly available through
the Web-browser document object model (DOM). With this approach the
source code of Lively Kernel worlds was dominated by the user interface.
Non-visual objects were discarded on serialization, if not explicitly stored in
an attribute of a graphical object’s DOM object before serialization. There-
fore, users had to explicitly take care of serializing their data, if it was not
represented as graphical objects, such as text or graphical shapes. This
approach produced a very readable and still comprehensible source code
representation of a Lively Kernel world. If a world could not be loaded any
more, it could still be repaired by manually editing it. However, user data
had to be stored explicitly and more complicated object structures could
not be serialized at all.
For practical reasons, we replaced this serialization approach with a gen-

eral, more Smalltalk-like serialization of the whole object graph, producing
an object table that could later be deserialized. As the pretty-printed extract
of the serialization of the Elephantmorph in Figure 5.3 shows, this source
code representation is not intended for users to edit directly anymore. Even
though we choose to store the object table in JSON, we as developers treat it
most of the time as a binary blob but do not edit it directly. The object table
has one root with id “0”. Every JavaScript object is represented by plain
JSON in the table. Value objects, such as strings, numbers, points, colors
and similar objects, are directly stored as attributes. References to other
objects are represented by special objects that store the serialization id of
the referenced object. The ids in the serialization table are different from
object’s persistent unique object ids morphs as described in Section 5.2.3.
Serialization ids are necessary, because JavaScript objects do not have ob-
ject ids we could use. Further we did not want to add persisted unique
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object ids to all objects in Lively. To speed up serialization we add such ids
temporally to objects during serialization and remove them afterwards.

5.2.1 Serialization Example
Getting a grasp of the Elephant’s serialization by looking at the pro-
duced source code alone is difficult because of its size and its lost struc-
ture. The excerpt in Figure 5.3 shows only about 10% of the elephant’s
source code representation. By using tools we can get this structure and
overview back. Figure 5.4 shows a more general view of on the serializa-
tion of an elephant morph. It was generated by Lively Webwerkstatt’s
SerializationInspector tool. The SerializationInspector displays the
object graph in form of a tree and computes an object’s own size (Size)
and the number (Refs) and accumulated size (FullSize) of all subobjects.
By filtering the entries below a given FullSize threshold, the table shows
the general object structure, even though some subobjects might normally
not be displayed in the world. As we can see in that visualization, the Brush
is the only object with some instance-specific behavior (onStep), which
doubles its serialization size, compared to body parts of the Elephant. How
this tool can be applied to help users cleaning up their worlds and parts is
discussed in Section 6.5.
Figure 5.5 shows the unfiltered serialization table for the Elephant’s Brush.

We can see here that Lively serializes the full state of objects, even though
some properties do not differ from their default values. Because of this
implementation decision, objects’ style and behavior are not automatically
updated. On one hand this can lead to outdated tools or applications when
they are serialized together with a world, but on the other hand it ensures
that experiments and draft objects also do not change their behavior.

5.2.2 Serializing Object-specific Behavior in JavaScript
Allowing users to create active content as scriptable objects is a form of
unification of state and behavior. Self [122] explored this unification many
years ago and our implementation language JavaScript builds on the same
underlying concepts.
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One difference between the unification of behavior and state in JavaScript
and Self is that behavior is not persisted in JavaScript objects. One reason for
this is that JavaScript closures cannot be fully serialized, because as security
mechanism there is no reflection interface for their variable bindings. So,
by design, a JavaScript program cannot introspect the bound variables in a
JavaScript function. Further, the JavaScript Object Notation (JSON), which
is often used for serializing JavaScript objects, does only serialize plain
objects without their functions or a reference to their prototype. JSON
has no concept for serializing arbitrary references in an object graph. The
JSON serialization mechanism can only serialize dictionaries (plain objects),
arrays, numbers, and strings. Objects cannot be referenced but are serialized
each time and cycles are not allowed. Pure JSON is, therefore, not suitable
for serializing arbitrary object graphs.
We solved these limitations by implementing our own serialization mech-

anisms as described in Section 5.2. Because current Web-browser technol-
ogy does not allow us to access the full state of JavaScript functions, we
make sure that we define our own persistent object-specific behavior using
our “addScript” method:

1 addScript: function(funcOrString, optName, optMapping) {
2 if (!funcOrString) return null;
3 var func = Function.fromString(funcOrString),
4 oldFunction = this[func.name],
5 changed = oldFunction && oldFunction.toString() !== func.toString(),
6 timestamp = oldFunction && !changed ? oldFunction.timestamp : undefined,
7 user = oldFunction && !changed ? oldFunction.user : undefined,
8 result = func.asScriptOf(this, optName, optMapping);
9 result.setTimestampAndUser(timestamp, user);

10 return result;
11 }

We basically do not allow instance-specific behavior to be regular
JavaScript closures by making sure (line 3) that the function source code is
reevaluated without its bound variables. The addScriptmethod ensures
that scripts behave the same before and after (de-)serialization.
Without full reflection capabilities, snapshotting of a running system

can become complicated. Interrupting and continuing a method execu-
tion requires advanced reflection capabilities JavaScript in comparison to
Smalltalk is missing. But since the execution model of JavaScript is simple,
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e.g. it does not support multiple threads, we do not have to serialize any
running code at all. JavaScript is only called by events that always return
to the browser-controlled main loop. There is no continuously running
parallel method execution in the background. Stepping scripts, a form of
green threading used in Lively Kernel, always return regularly so the user
interface can be updated. That way they can be stopped and restarted for
(de-)serialization as needed.

5.2.3 Cloning and Derivation History
To preserve the invariant in object-oriented systems that all objects have a
unique identity, we need to make sure that cloning does not lead to identity
conflicts. We implemented this by generating a universally unique identifier
(UUID) for the cloned object and its subobjects. This ensures that two
objects in the system do not have the same id. The initial version of Lively
Kernel used an object counter which conflicted with shared objects (in form
of parts) across world boundaries. Using UUIDs in Lively Webwerkstatt
solved that problem. However, assigning all objects new ids while cloning
deprives comparing and merging algorithms of the possibility to detect
object movements after object structure changes [118].
As a contribution of this thesis, we propose to remember object cloning

relationships by preserving previous identities. Old identifiers are remem-
bered in a derivation history of each object. This is done for every subobject
of that object, too. So, cloning in Lively does not produce an exact duplicate
in every aspect. The identifiers and the derivation history of the object and
its clone differ. This information is meta-information that should ideally be
stored separately [74], e.g. in separate meta-objects like Self’s Mirrors [14],
so that it does not interfere with domain code. But since JavaScript has
no concept of distinguishing properties from meta-information, conven-
tions had to be established and tools made aware of them. Similar to other
JavaScript frameworks, we use special naming conventions, e.g. prefix-
ing property names to mark meta-data, making such separation easier to
recognize.
When using object cloning for improving robustness in live coding ses-

sions, it can become hard tomanually deal with additional redundancy. But
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by tracking the derivation history of objects, we can mitigate this problem.
For example, when a tool is developed by two different users at the same
time, their changes to the tool have to be merged. The objects have new
identifiers, because they were copied from the PartsBin, so the id cannot
be used for identifying corresponding subobjects any more. By capturing
the derivation history of whole object structures, we can find matching
old and new objects in an objects graph so comparing and merging such
complex graphical objects becomes easier, especially when the structure of
objects change, e.g. which is a common result when dragging and dropping
graphical objects.

5.3 Object Merging as Collaboration Support
Objects can be compared at different levels of abstraction. As shown in
Figure 5.6, standard tools can point out the difference in text files, e.g. as in
the source code representation of serialized JavaScript objects (4). But since
users are not expected to be familiar with this low-level representation of
objects, in Lively, object merging can compare JavaScript objects directly
(2 and 3), and resolve conflicts based on the visual representation (1). The
merging tools utilize the object’s derivation history to identify correspond-
ing subobjects in an object graph when comparing objects that were cloned
from each other.

5.3.1 Simple Comparison of Objects
When comparing different versions of the same object as shown in Figure 5.8,
the identity of object P1 does not change when modifying it (1). P1’ is
still the same object, but with different state. When comparing these two
versions to produce a diff (2), the object ids can be used to detect that S1
changed, S2was deleted, and a new object S3was added. Without knowing
the object identities, the algorithm would not be able to figure this out.
Relying only on object structure, a diff algorithm would be able to detect
only a state change in the second object of P1, which would not help the
user in the case of very different states in S2 and S3.
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Figure 5.6: Comparing objects at different levels of abstraction [16]

5.3.2 Comparison with Cloned Objects
When an object (P1) is cloned as shown in Figure 5.9, the new object P2
received a new identity, so that both objects can coexist in the same world
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Figure 5.7: Notation used in Figure 5.8
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(1) mutate

P1'

S1

[1]

[2] [4]
S3

S2
[3] [4]

S3X
Diff

(2) compare

[2]
S1

Figure 5.8: Comparing two versions of the same object P1. (Notation is
explained Figure 5.7)

without identity conflicts. Unlike the scenario in Figure 5.8, the object
identities changed and cannot be used for comparing objects any more.
But since each object still knows where it was copied from, we can deduce
that P2’s S1 was copied from P1’s S1 and changed afterwards. Further it
becomes clear that S2was deleted, and S3 added.
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Figure 5.9: Comparing an object P1with its mutated clone P2. (Notation is
explained Figure 5.7)

5.3.3 Merging Objects using the Derivation History
Comparing two objects like P1 and P2 can only show where they differ but
cannot automatically merge them. If both objects where derived from a
shared ancestor, the derivation history can be employed to find that common
ancestor and perform a so called three-way diff [103]. As a three-way diff
on text files shows which lines were removed, added, changed or are in
conflict with each other, a three-way diff on objects recursively shows which
properties were removed, added, changed or where there are conflicts. This
information can then be used to perform a three-way merge.
Figure 5.10 shows a typical example where such a three-way diff of

objects can be used. In that scenario, a part P1 was created in one world
and published in the PartsBin (1). It was then copied from the PartsBin
into a second world (2), where it was edited (3) and published again (4).
Meanwhile, the development of P1 continued in the first world (5), but it
comes to a conflict, when trying to publish the modified P1’ (6). The first
world could ignore that conflict and resolve it by replacing the P2with its
own version, or it could decide to merge object P1’with object P2.
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For finding the shared ancestor (C) of object P1’ (A) and object P2 (B),
we can look at their derivation history. The id of the common ancestor can
be found by comparing the derivation history of the two objects. But just
having the id does not automatically yield an object (C). By looking at the
revision history of the part P, we can find the original published version of
object P1 (C) and use it to perform a three-way merge (7).
Similar to a textual three-way merge, independent changes can be auto-

matically merged, e.g., we keep B’s changed S1, because (A) did not touch
it. We further can add S3 and S4, because they do not conflict either. But
the change S2 (A) does conflict with (B) deleting S2. Like in textual diffing,
such a conflict has to be propagated to the user and solved manually.

5.4 Summary
In this chapter, we have shown how tools in Lively Webwerkstatt are im-
plemented as normal objects and how they can be modified in the same
way. Tools are built as user-editable graphical objects (morphs), that can be
adapted at run-time and shared with others by publishing them in a parts
bin. Since objects are changed in a prototypical way, users do not have to
fall back on a source code level any more. This source code is produced
by our serialization mechanism. Unlike the standard JavaScript object se-
rialization (JSON), this allows us to serialize complete object graphs. We
further also serialize instance-specific behavior, which is the foundation
of our prototypical workflow. Since sharing objects in a parts bin allows
users to collaboratively work on objects, we have to provide means of object
comparison and merging. The object’s and all its subobject’s identity has to
change after cloning, so that there are not two objects with the same identity
in the system. We have shown how tracking the derivation history of all
objects can help while directly comparing two objects to produce a more
meaningful diff. Finally, we have discussed how the derivation history can
be used to find a shared ancestor that is needed to perform a three-way
merge, which can combine two separately changed objects automatically
when there are no conflicts.
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6 Evaluation and Discussion
This chapter discusses how parts and layerswere applied.
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Figure 6.1: A SplitterMorph adjusts the extent of two adjacent morphs
when dragged

6.1 Splitter Morph as an Example of Adaptation
through Object Composition

This first example is a real use case from Webwerkstatt. It shows what
kind of simple morphs can be created using the scripting approach. The
SplitterMorphwas developed to adjust the extent of two objects. As shown
in Figure 6.1, when the splitter is dragged down, the upper blue morph gets
larger and the red morph gets smaller. When it is dragged up again, the
process is reversed. The interesting aspect of the SplitterMorph is that it
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Figure 6.2: Editing the SplitterMorph with Halo and ObjectEditor

does not need an explicit configuration. It works by automatically detecting
the objects next to them and connects them like a patch. By looking at the
bounds of the object, it can detect them and adjust them appropriately. The
getSiblingsAtCorner script in the ObjectEditor in Figure 6.2 shows some
of its implementation. The developers realized that they built something
useful and published their morph in the PartsBin for others to experiment
with and reuse.

6.1.1 Evolving the Inspector by Adding the Splitter Morph
At a later stage, some users noticed the new SplitterMorph and realize
that the inspector, a core development tool, misses this feature and decide
to change it. Figure 6.3 shows the work flow: (1) they open a standard
inspector and drag the SplitterMorph to the correct position. (2) They test
the new behavior by interacting with the Inspector and (3) publish it again
to the PartsBin. From then on, when users open an inspector, they can
adjust it using the SplitterMorph.
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(1)

(3)

dropping SplitterMorph
on running InspectorTool

(2) testing new behavior
of Inspector panes

publishing changes 
in PartsBin

Figure 6.3: Adopting the inspector tool using a SplitterMorph

This tool adaptation did not involve programming. It demonstrates that
publishing operations does not always require to actually type code in
Lively. Users can contribute in a meaningful way by changing the style
or layout of objects or editing the text of labels without having to touch
source code. It also demonstrates that object composition can be a powerful
mechanism to develop objects.

6.2 Developing with ContextJS in Webwerkstatt
We have gained experience using development layers when evolving Lively
Kernel in our self-supporting development environment Webwerkstatt [72].
This section shows three examples that illustrate such usages.
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Figure 6.4: A workspace with the text coloring source code and an example
instance.

6.2.1 Text Coloring
An example of a behavioral adaptation of the base system is text coloring via
keyboard shortcuts. Figure 6.4 shows the complete source in a workspace
and the text object, on which the new feature was interactively tried out.
The layer refines the keyboard processing method andwill color the current
selection if specific shortcuts are pressed.
This is an example where shaping the tools happens directly while they

are used. The example looks simple at first, but it shows how easy it is
to produce meta-circular loops between tools that change their own code
at run-time as described in Section 2.1.2. The new text coloring behav-
ioral adaptation affects all Text morphs in the system and the Workspace
tool uses also a Text morph. During development, the activation of the
TextColorLayer should be restrained in a way that prevents it from chang-
ing the behavior of the Workspace. That way making an error while devel-
oping the code of processCommandKeys will not affect the workspace and
the developer can continue editing.
As a result, layers allow developing features in a controlled way and

using them later in the entire system.
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Figure 6.5: A snapshot of developing auto-completion of source code, show-
ing a workspace and an area where the new code is activated.

6.2.2 Developing Auto-completion
A more complex example is the development of source code completion
for the development environment as shown in Figure 6.5. It adapts over
10 methods in two classes, although the figure shows only the area where
the new behavior can be tried out and the workspace with the code under
development. By using layers, the feature that could interfere with the
workspace itself can be developed locally and tried out in other places by
changing the scope of the layer.
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6.3 Run-time Evolution of Tools: URLLister
Example

We use Lively Webwerkstatt as an authoring environment for all kinds of
media, not just JavaScript programs. A project ProjectorMorph allows us,
for example, to give presentations directly from within Lively (as shown
in Figure 6.6). After interactively creating an overview slide with various
screenshots, we were interested in a list of URLs of the images being used,
because they should be reused in another place. Instead of going through
each morph and manually copying the image URL into a list, we decided
to write a little script in a workspace that does exactly this:

1 var urls = []
2 this.withAllSubmorphsDo(function(eaMorph) {
3 if (!eaMorph.getImageURL) return;
4 urls.push(eaMorph.getImageURL())
5 });
6 urls.join("\n")
7 // ->
8 // ../screenshots/131204_LaTeXOutliner_ToDo_Extraction.png
9 // ../screenshots/110818_WorldSerializationGraph1.png

10 // ../screenshots/140130_SimulationPart_CustomAutoCompletion.png
11 // ../screenshots/130817_SerializationInspector_03.png
12 // ../screenshots/130128_ChangeLogVisualization_05.png

The variable this (Line 2) is bound to the slide that contained the images.
Not every morph is an image and understands getImageURL, so we ignore
them (Line 3). We are interested in a textual list, so we convert the urls
array into a string (Line 6).

6.3.1 From Script to Graphical Tool
After writing this script, we realized that it is useful and that we wanted
to publish it so we (and others) can reuse it later. So, we published the
workspace with the script directly in the parts bin. Then two things hap-
pened: first, we wanted to make this script a little more user friendly and
second, we generated new requirements while using the tool.
As shown in Figure 6.7, we added a Log text field (1) to the workspace (2)

and also added a Splittermorph (3), so the size can be adjusted (as dis-
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(2) Workspace

(1) Log

(5) Eval Button (4) Magnifier / Selector

(3) Splitter

Figure 6.7: Example of an URLLister tool.

cussed in Section 6.1.1). At this point the script slowly changes its character.
First it was a pure text snippet without a specific user interface. Then it
evolves gradually into an interactive graphical tool. The textual script is still
visible, but the Magnifier (4) allows it to target any visible morph and the
Eval button (5) executes the workspace without keyboard interaction. We
do not need the script in the workspace to be directly executed by the user
any more. Therefore, we could go on refactoring and hide the workspace by
making the script instance-specific behavior of the tool. But by not hiding
that code, the user is still invited to experiment with it.
At a later point, we wanted to see the URLs not in a list, but directly

printed on the image morphs. So, we modified the URLLister to show
(highlight with red corners) all images and display their URL as a label (as
shown in Figure 6.8).

6.3.2 Refining Base System Behavior
While using the show function in our URLLister script, we wondered why
the highlighting corners disappear after just 3 seconds. This is not long
enough for reading the URLs on the labels. Since the show function could
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not be directly customized, we could either implement our ownhighlighting
function or we refine (or fix) the base system behavior.
By looking at its API, we learned that show called a showMorph, which

then called showThenHide. The function showThenHide accepts a duration
parameter, which is omitted by showMorph. To fix this generally, we
could add the parameter to all show functions, but we could not oversee
what would be the impact of this. So, we decided to context-specifically
adapt the showThenHide function in the lively.morphic object with a
LongerShowDelayLayer:

1 cop.create("LongerShowDelayLayer").refineObject(lively.morphic, {
2 showThenHide: function(r, duration) {
3 if (duration === undefined) duration = 10; // new default
4 return cop.proceed(r, duration)
5 }
6 })

We could either activate it now globally, but this would change other
calls to show, too. So, we scope the new behavior by overriding the evalAll
method of our URLListers’s workspace, that is triggered by the Eval button
(5), with an instance-specific script in our URLLister:

1 this.addScript(function evalAll() {
2 return cop.withLayers([LongerShowDelayLayer], function() {
3 return $super()
4 })
5 });

This script activates the layer for its dynamic extend and then calls itself
$super, which will delegate to the default behavior of the class. All calls to
show from URLLister will highlight the corners and display the attached
label for 10 seconds instead of 3 seconds. Since the URLLister requires the
LongerShowDelayLayer layer, we add it to the onload script of the object, so
it is bundled with the URLLister.

6.3.3 Tools in Lively Webwerkstatt
Compared to other tools in Lively Webwerkstatt, the URLLister is very
small, both in terms of time needed for development and object size. But it
demonstrates well how we built many tools in Lively Webwerkstatt. Tools
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consist of parts that are copied out of the repository or are extracted directly
fromother tools. The individual parts are then glued togetherwith scripting
them. And if necessary, the base system can be adapted with layers. By
sharing the result again in a parts bin, others can get inspired, start using
the new tool, or adapt it for their own needs.

6.4 Overhead of Storing Meta-information
Due to their decentralized nature, objects in Lively Webwerkstatt carry a
lot of meta-information. Some meta-information is added to all objects that
are or were once published in the PartsBin (partsBinMetaInfo property).
That meta-information can grow in size, because it also stores all change
messages typed in by the user when publishing this object. That way an
object can be copied from one repository to another and keep some meta-
information of its own change history. Other meta-information keeps track
of each object’s and its subobjects’ identity and its history of identity changes
when cloning (id and derivationIds properties). This meta-information
increases the size of objects, both in memory and when having to transport
them. But since this information is only added on a coarsely granular level
to objects actually published in the PartsBin it still stays relatively small.
Tomeasure the overhead, we compare the size of objectswith andwithout

the meta-information. The size is measured by the length of their serialized
string representation. The size is measured once with all meta-information
present and once with all information stripped.
For a larger lively part like the ObjectEditor tool, the stripping of all

partsBinMetaInfo and the derivationIds saved 38kB from the original
453kB (8.5%). This low percentage can be attributed to the relatively large
size of the object. Since the meta-information includes a changelog, the size
depends on how often the object is edited and not how large the object is in
general.
Figure 6.9 shows 8 lively parts from the Basic and Widgets category

in a table. It shows measurements of the serialization size (total and
percentage) of the whole object, its parts bin related meta-information,
and the addition of derivation ids. It shows that smaller objects have a
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name
original 1999 100.00% 1517 100.00% 8240 100.00% 4972 100.00%
partsBinMetaInfo 740 37.02% 423 27.88% 3248 39.42% 706 14.20%
derivationIds 61 3.05% 22 1.45% 373 4.53% 101 2.03%
total 801 40.07% 445 29.33% 3621 43.94% 807 16.23%

name
original 5252 100.00% 1851 100.00% 4904 100.00% 2476 100.00%
partsBinMetaInfo 966 18.39% 0 0% 775 15.80% 404 16.32%
derivationIds 114 2.17% 57 3.08% 124 2.53% 22 0.89%
total 1080 20.56% 57 3.08% 899 18.33% 426 17.21%

(7)6Slider (8)6Path

(1)6Ellipse (2)6Image (3)6Rectangle (4)6List

(5)6Button (6)6Text

(1)/ (2)/ (3)/ (4)/

(5)/ (6)/ (8)/(7)/

Figure 6.9: Meta-information memory footprint of basic lively parts. Unlike
bigger objects such as the ObjectEditor or other tools, these small objects
from the Basic category of the Lively PartsBin have high ratio between to-
tal size and size of the meta-information. (based on data from http://lively-
kernel.org/repository/webwerkstatt/PartsBin/Basic/ Rev. 193298, 2013-03-
08)
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Total

0-‐5 5-‐10 10-‐15 15-‐20 20-‐25 25-‐30 30-‐35 35-‐40 40-‐45 45-‐50 50-‐55 55-‐60 60-‐65 70-‐75 Sum
Basic 0 7 3 0 0 1 0 1 1 0 1 0 1 1 16
Tools 8 9 15 8 7 4 2 2 3 1 0 1 0 0 60
Visualization 4 8 3 5 4 2 1 0 0 1 0 0 0 0 28
Widgets 2 11 5 0 1 1 2 4 1 1 0 2 0 0 30
Wiki 3 8 1 2 0 2 0 0 0 0 0 0 0 0 16
Total 17 43 27 15 12 10 5 7 5 3 1 3 1 1 150

Histogram	  normalized	  for	  each	  category

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Basic 0.0% 43.8% 18.8% 0.0% 0.0% 6.3% 0.0% 6.3% 6.3% 0.0% 6.3% 0.0% 6.3% 6.3% 100%
Tools 13.3% 15.0% 25.0% 13.3% 11.7% 6.7% 3.3% 3.3% 5.0% 1.7% 0.0% 1.7% 0.0% 0.0% 100%
Visualization 14.3% 28.6% 10.7% 17.9% 14.3% 7.1% 3.6% 0.0% 0.0% 3.6% 0.0% 0.0% 0.0% 0.0% 100%
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Figure 6.10: Memory overhead of meta-information stored directly in parts
(Webwerkstatt PartsBin Rev. 200311, 2013-10-01))

higher percentage of meta-information data, as shown in an extreme case
of the Rectanglemorph. The Rectanglemorph has a large percentage of
partsBinMetaInfo and a small overall serialization size with 40% taken up
by meta-information.
This meta-information also accumulates, since it increases every time an

object gets cloned or published. It was important for us to know which
effect the decentralized storing of such meta-information has on the size of
our tools and other user developed parts. Especially since there are some
tools that were cloned and published many times.
For that we analyzed several categories of parts in Webwerkstatt’s

PartsBin. We measured the impact the additional meta-information has on
the serialization size of each part. As shown in Figure 6.10, in most objects

121



Evaluation and Discussion

the percentage the additional meta-information takes up is 5-20%, but there
are also some objects where the storing of additional meta-information
takes up to 70%.
We learned that the additional storing of meta-information in objects has

a high impact on the size of objects: in memory, when sending them over
the network, and when storing them on hard-disk. But all these resources
where available abundantly in our development scenarios, so we addressed
this issue only when needed by providing tools that can strip all kinds
of meta-information from objects. Generally, it is not important to keep
the complete derivation history and other meta-information stored in the
objects at all times. By providing a central information system that can
query the history of individual objects, we should be able to keep the
overhead of meta-information constant.
Replacing our file based repository of worlds, parts, and modules with

a finer granular database that knows about individual objects and their
development history is part of our future work.

6.5 Manual Garbage Collection in User Content
When manipulating objects directly, users tend to work only on the things
they see. And naturally, there are things they are not aware of: property
entries that are not used any more, whole scripts, or references to objects.
This garbage will not be removed if the developer does not clean it up. In
systems that are bootstrapped regularly, such unused code and content
gets automatically removed because the objects are transient and only the
abstract code is persisted.
Working with source code is more abstract than working with objects

directly. Since developers do not interact with objects, objects can be dis-
carded if they are not valuable user data, to clean up a system. This is,
for example, a side effect when serializing the state of applications into
relational databases. When editing plain source code, developers have to
keep the code clean, because it is their only representation and they have
to see it all the time. When working with objects everything is opaque by
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default and developers have to actively inspect objects individually or use
tools that visualize their state.
This leads to the problem that a new skill is required when working

with objects directly: the object space has to be kept clean. This problem is
shared by all systems with persisted objects. For example, in the Smalltalk
community developers also have to keep their images clean. Since many
developers are not used to this, some developers make it a habit to regularly
trash their images and bootstrap their projects from fresh images. When
there is no source representation available, as in our approach, the objects
cannot be trashed automatically but have to be cleaned up by the developers.

TestRunner1

TestRunner

TestRunnerPartItem

->submorphs

lively.morphic.World
lively.morphic.HandMorph

->hands

AttributeConnection

->attributeConnections

PartsBinBrowser

morePane

selectedPartVersions

->submorphs

->submorphs

->submorphs

PartsBinBrowser

lively.morphic.TitleBar

->submorphs

TestClassesList

lively.morphic.TitleBar

lively.morphic.Text

lively.morphic.GeometryConnection

->connections

lively.morphic.Morph

lively.morphic.GeometryConnection

->attributeConnections

lively.morphic.Text

->1

lively.morphic.TitleBar
TestRunner2

TestRunner ->submorphs

->submorphs

->attributeConnections

->1

(2) TestRunner is 
     unexpectedly cached

(1) Item should open a 
     TestRunner on click

(3) PartItem hangs on 
     to its PartsBinBrowser

Edges: Following references back from TestRunner
Node size: Serialization size of subobjects not represented in Graph

(4)  World is serialization root

Figure 6.11: Visualization of a world in Lively Webwerkstatt that contains
garbage. (created with our WorldAnalysis tool)
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An example for this is shown in Figure 6.11, which shows a visual-
ization of exploring the references to instances of TestRunner and the
PartsBinBrowser tools, which are not visible in the user interface, but were
unintentionally serialized due to other object holding references to them.

(2) Invisible PartsBinBrowser

(3) TestRunnerPartItem
(1) Explore Interactively

Figure 6.12: Screenshot of SerializationInspector

During our own work in Lively Webwerkstatt we learned to avoid
using fixed references as much as possible and replacing them with
dynamic name-based lookups. We further implemented tools like a
SerializationInspector that help us detect such serialization issues. Fig-
ure 6.12 shows a SerializationInspector was applied (1) to detect the
objects (2) that were responsible for the unusual overall size of the world.
The issue on this page was that a PartsBinBrowser (3) was accidentally
serialized together with a TestRunner PartItem. The users that created
the template for this page added such a PartItem to the world, to quickly
launch a TestRunner.
This case exemplifies that like in Smalltalk, having a full-featured object-

oriented persistence (as presented in Section 5.2) can be powerful, since
it allows serializing not only data but complete instances of running ap-
plications. But it also requires additional care to not pollute serialized
user content. To address these issue in Webwerkstatt, we a) provide tools
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that help keeping the object space clean and b) provide programming
techniques that avoid using unnecessary hard references by looking up
objects dynamically by names. Having tools to show and remove garbage,
which are available in LivelyWebwerkstatt, can be helpful in such occasions.
But developers are usually not aware of the problem until they realized
that somehow, their worlds get larger than they should be. The serialized
TestRunner and PartsBinBrowserwhere not detected, because they did not
harm the user experience and, therefore, nobody looked explicitly for such
garbage.
This problem is mainly caused by a design decision: we try to preserve

all data and, therefore, like in Smalltalk images, developers have to keep
track of the reference they create. An alternative way would be to identify
all valuable user data and throw away the rest, but since this may result in
accidentally discarding user data we did not pursue that direction.

6.6 Summary
In this chapter, we have presented examples of tool development and adap-
tation in Lively Webwerkstatt. We have shown how tools can be adapted
through direct manipulation and scripting and how layers can be used to
context-specifically adapt behavior of the base system at run-time. The
URLLister example has shown how parts and layers can complement each
other. It demonstrates the evolution of a workspace script to a graphical
tool. We further have evaluated how the additional meta-information that
we have added impacts the serialization size. We have explored a case of
how the general serialization kept invisible objects that bloated the world
size and how we can detect those with tooling support developed in Lively
Webwerkstatt.
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7 Related Work
This chapter relates the results of this thesis to other self-supporting and
Wiki-like collaborative programming environments. We discuss then re-
lated work that is more implementation-specific, such as repositories of
scripted objects, other implementations of context-oriented programming,
and techniques for scoping dynamic behavioral adaptations.

7.1 Self-supporting Development Environments
In principle all file-based editors can be part of a self-supporting environ-
ment when their source code and the necessary compiler or virtual machine
to run the editor is available. In that sense, operating systems like Unix [55]
are self-supporting. They provide all the tools needed to change themselves
at run-time. Not at run-time of the individual application, but at run-time
of the operating system. GNU Linux [105] goes further than Unix by pro-
viding the source code of nearly all applications and tools in the system.
Hence, knowledgeable users can adapt all aspects of their system, ranging
from shell scripts to the kernel. But programming the Linux kernel from
within a running Linux kernel cannot happen at run-time. The system has
to boot after every change, resulting in relatively long feedback loops. As
stated in Section 2.1 we call systems only self-supporting when they can be
changed at run-time from within and without having to restart themselves.
Adapting a Unix-like system on a high level by editing shell scripts pro-

vides fast feedback loops. Shell scripts by design lack a graphical user
interface and can usually be executed rapidly and without user interven-
tion. Since they can be used both as command in the command line interface
and for programming they allow users to smoothly transition from using a
tool to adapting it or combining it with other tools. This power of adapting
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your own tools or creating new ones specifically for the problems at hand
are part of our motivation.
A system that takes the run-time adaptability further is Smalltalk [35],

which is also discussed in Section 2.1. Smalltalk and especially Squeak [49]
with its Morphic [75] user interface, provide malleable tools by allowing to
change the definition of classes and methods at run-time. However, directly
adapting the behavior of individual instances can sometimes be difficult,
since methods are only defined in classes. So, experimenting by directly
changing important methods can break the system. Since Smalltalk is a sin-
gle user environment this problems can be mitigated through tool support
that helps to recover the system. Typical tools that help Smalltalk develop-
ers in recovering after changes that broke the system are the debugger, the
emergency evaluator, and the changes file. The debugger is opened auto-
matically on every unhandled error. The emergency evaluator provides a
simple REPL and appears if the debugger should fail to open. The changes
file can be used to replay changes selectively after the system crashed, so
that the change responsible for the crash is not executed again. Because
Lively Webwerkstatt is Web-based, using the same techniques as Smalltalk
for recovering from failures in run-time development was not possible.
The Web-browser’s debugger cannot edit methods, so it cannot be used to
recover from failures. Using the JavaScript console of theWeb-browser feels
very similar to the emergency evaluator and can be used in the same way.
Since all source code in Lively is under revision control, reverting source
code files to a previous version has the same effect as replaying selected
changes.
An important aspect of the Smalltalk programming language is its ability

to allow programs to reflect upon and modify themselves at run-time. The
ability of self-modification in Smalltalkwas not added to the language to cre-
ate programs that can automatically adapt and evolve themselves [92], but it
is a prerequisite for building such an interactive development environment
in the first place. The reflection mechanisms provided by Smalltalk are di-
rectly integrated into its object protocol. More sophisticated object-oriented
reflection architectures like 3-KRS [74], Mirrors [14], Reflectivity [26], and
Albedo [88] separate the reflection from the domain computation by allow-
ing only some meta-objects to reflect over normal domain objects. These
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approaches deal with meta-circularity problems on a programming lan-
guage level, but the meta-circular dependencies described in Section 2.1.2
are between tools and the objects those tools work on. From the perspective
of the programming language, tools are domain objects, e.g. tools in Lively
Webwerkstatt are regular graphical objects the user interacts with, and they
are designed thatway so that users can adapt them. Similar to Smalltalk, our
implementation language JavaScript also provides only “limited, add-hoc
reflective facilities” [74]. The implementation of self-supporting develop-
ment environment despite of these limitations is one of the contributions
of Lively Kernel [50] and part of our research.
A general approach to circumvent the problem of reflective dependencies

is to step out of the environment. Virtual Smalltalk Images [17, 86], for
example, allow performing low level changes to core Smalltalk objects that
would normally break the system by using a second image to perform
those changes. This technique can be useful to deal with corner cases of
reflection. Unlike in Smalltalk, the Lively Kernel is loaded from JavaScript
source code files, so developers can fall back on text editors, which Lively
also provides, in case of an emergency where “Image surgery” would be
needed in Smalltalk.
Self [122] is an object-oriented programming environment that allows

programming objects directly. Objects in Self contain and access data and
behavior in a uniform way. Objects in Self can be transported from one Self
world to another [121], but Self does not come with shared repositories of
objects. Instead it approaches the problem of collaborative development by
using a synchronously shared world. All developers work on one machine
in one running Self-image with a 2D world of directly manipulatable graph-
ical objects (Morphs). Collaboration is enabled by using the networking
capabilities of X-Windows to distribute the user-interface. Since there is
only one running system, it can be adapted at run-time without having to
replicate it for synchronous collaboration as, for example, the Smalltalk-
based virtual environment Croquet [98] does. Smaller problems can be
directly solved in the world, similar to the single user usage of the system.
When bigger problems occur, the normal development world is halted, all
collaborators join a debugging world to fix more serious problems from
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there [102]. Here, like in our approach, the redundancy and indirection is
only introduced when necessary and not active by default.
Modern text editors that follow the Emacs-like self-supporting design

to some extent, like the Sublime Text editor [97], made the workflow of
customizing the system easier. Sublime observes all source code files that
define user extensions and automatically reloads themwhen changed. This
allows customizing the system by editing some parts of its source code, and
immediately see the change affect all currently active instances of the text-
editor. This does not go as far as live programming approaches [124, 78, 37]
but customizing the editor becomes very immediate. Emacs and Sublime
show that the range of how much a system can be adapted or even evolved
may vary. Both systems are built around a statically compiled core, which is
then heavily extended using a dynamic programming language. The scope
of what can be changed is much smaller in Sublime than in Emacs since
many parts of the system are not changeable at all. E.g. the side bar which
shows all files in a project can only be customized through declaratively
specifying filters, but cannot arbitrary be sorted or extended in other ways.
But having such limitations, the environment tends to be, even though it is
still possible, much more difficult to break. As most end-user development
approaches also show, allowing a system to evolve only in anticipated ways
is a practical approach to prevent the users from breaking their tools [81, 87].
Built on top of Smalltalk, CoExist [107] addresses the problem of auto-

matic version tracking during run-time development. By allowing multiple
versions of the same class to coexist in one environment, different versions
of code can be independently tried out and compared side by side in one
system. CoExist solves the problem of making small variations to code and
being able to quickly jump between them back and forth without having
to restart the system. To implement it efficiently in Smalltalk, the virtual
machine had to be adapted to make the class lookup late-bound. CoExists
can serve as a domain-specific undo-and-redo mechanism for reverting
class and method changes. This allows developers to go back to a previ-
ously working version of the system. In comparison, developers in Lively
Webwerkstatt have to actively employ techniques such as using cloning
tools and scoping changes in layers. Such scaffolding can decouple the tools
used for development from the tools under development so that adapting
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tools at run-time becomes safer or possible at all. CoExist does not support
developers with such a scaffolding that prevents breaking the tools in the
first place, it provides a safety net, similar to Smalltalk’s changelog, that
helps recovering the system quickly if tools were broken. Ideally developers
would benefit from both approaches. CoExist’s versioning of class-objects
was experimentally extended to the general versioning of all objects in the
system [117, 9]. The approachwas implemented in JavaScript and evaluated
with Lively Kernel. It showed that having such a general undo-mechanism
in a freely programmable object-world can provide a valuable safety net, but
due to the bad performance of JavaScript’s proxies, it was not fast enough
for productive usage yet.
Worlds [126] is a general approach to controlling the scope of side-effects.

Implemented for Smalltalk and JavaScript, worlds are a language construct
that allow capturing all changes to object state while executing arbitrary
code. Since JavaScript does not distinguish between state and behavior,
Worlds can also be used to change object behavior in a scoped way. An
example use case for this approach is a general undo-and-redo mechanism
that can capture all changes to objects and revert them as needed. Worlds
can be understood as perspectives through which the same object can look
differently depending on the currently active world. Similar to Us’ lay-
ers [101], which are discussed in Section 7.5, worlds can only have one
fixed parent. This means unlike COP’s layer composition, worlds cannot
dynamically combine the effects of several worlds without statically merg-
ing them first. Similar to our development layers in ContextJS, worlds can
serve as scaffolding that has to be applied before actually performing a
potentially tool breaking adaptation. But different to development layers,
captured changes in worlds cannot be treated as features and be activated
on demand. Our development layers serve both purposes, first they can be
used as scaffolding that provides more safety during run-time adaptation
in a self-supporting development environment, and second development
layers can be used to share adaptations with other users who can try out
new features without having to statically merge them into their system.
Vivide [112] is a scriptable data-flow development environment in

Smalltalk. Development tools themselves are implemented as scripts that
select, transform, and present meta-objects such as classes and methods
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to the user. Vivide supports to adapt those scripts at run-time, making
the tools evolvable while they are used. Since Vivide is implemented in
Smalltalk and can edit Smalltalk code, it can be used in a self-supporting
way. But unlike Webwerkstatt it is not collaborative and does not need to
provide additional means for preventing queries to break Smalltalk.
Edit-and-Continue [28], as implemented for Microsoft’s .Net framework,

observes changes to source code files, automatically compiles them, com-
putes the difference to the currently running system and replaces existing
methods at run-time. This allows, for example, experimenting with pa-
rameters or interactively developing a new algorithm in a game. Since the
program is updated automatically, the system produces a short feedback
loop. But the scope of possible changes is narrow, e.g. it does not allow
creating completely new behavior or objects, it is not suited to develop the
whole system continuously that way. Such changes force developers to
restart their application.
Brackets [1] andAtom [34] are examples of newdevelopment environments

that allow for run-time development of Web-applications by controlling
not only the server-side, but by also running the client side in custom Web-
browsers. Because the environment is aware of the development context,
the running application can automatically be updated while the source is
edited. The standard example here is changing the color in a Cascading Style
Sheets (CSS) file which is immediately shown in the Web-application. Even
though both tools are written with JavaScript, HTML, and CSS, they are
not self-supporting, because they cannot be used to adapt themselves at
run-time.

7.2 Collaborative Web-based Development
Version control systems, such as Subversion (SVN) [85] and Git [120], can be
used for collaboration and as fallback to revert source code if needed, two
features which are very useful in self-supporting systems. For example,
Lively Webwerkstatt uses SVN as a back-end to store all source code and
user content and, therefore, can provide a full change history of the system.
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GitHub [23] is a social code sharing environment. It combines source
code repositories with issue management. They provide a better user in-
terface and automation around the distributed version control system Git,
which was built for the management of Linux source code [120]. Unlike
SVN and similar version control tools, Git does not require a central repos-
itory. Developers can commit fine-grained changes, which can later be
merged with other developers or a central repository like GitHub. The
decentralized approach makes forking and merging whole projects easier,
since the complete development history can be preserved. Our approach of
keeping the cloning history per object is more fine grained than the forking
history of projects in GitHub. In Webwerkstatt and its parts bin we can
trace the history of subobjects after they have become part of another object.
Copying files with their history from one Git repository into another is not
directly possible, but requires merging and filtering of the entire projects
history. [18]
Similar to Lively Webwerkstatt,Web-based development environments like

Cloud9 [24] allow developers to start working without installing tools or set-
ting up a project first. Hence, initial overhead of contributing to a software
project can be reduced to visiting a Web-page. But different from Lively,
general-purpose Web-based developments separate the development from
the run-time environment as discussed in Section 2.1.3. The programming
workflow in such environments typically involves an edit-run-test loop.
Depending on the starting time of the Web-application under development
and the availability of an automated test suite, the iteration time can be
relatively fast. Similar to all file-based development environments, systems
like Cloud9 can also be used to change their own source code. This does
not allow evolving the system while it is being used, since for adapting
the environment and its tools, a second instance of environment has to
be opened. There the source code can be edited and the changes can be
tested in an edit-run-test loop with a third instance. When the developer
is satisfied, the first environment has then to be restarted to get the new
adaptation. In Lively Webwerkstatt the tools can be adapted and evolved
while they are used.

WeScheme [128] is a Web-based development environment for the func-
tional programming languages Scheme and Racket. WeScheme uses a
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client-side byte-code interpreter on top of JavaScript to support event-driven
functional programming. The byte-code is created by a server-side Racket
compiler. Similar to LivelyWebwerkstatt WeScheme provides an interactive
development environment, that allows users to start programming without
having first to install software. Since WeScheme does not use JavaScript
directly, as Lively does, it has more control over its execution, allowing to
interrupt and inspect the running coroutines as needed. Getting this kind of
control over the execution without using a full JavaScript interpreter inside
of JavaScript is part of our ongoing research [95]. Unlike in Webwerkstatt,
users in WeScheme cannot adapt and evolve their tools from within the
environment.
MikiWiki [129] is a Web-based wiki-like development environment that

allows its users to create, share, and clone little JavaScript widgets and to
use them in their wiki pages. The environment runs mainly on the client
side to allow its users to collaboratively design and evolve both wiki text
and JavaScript without running user code on the server. MikiWiki is used
as an example for a meta-design process that involves the collaboration and
communication of developers with their users through the development
environment. Even though the development of the JavaScript widgets hap-
pens at the use time of the Wiki, the development of the widgets happens
in a typical edit-run-test cycle. Even though its users can to some degree
customize their wiki pages via user-created widgets, the environment itself
cannot be changed.

7.3 Repositories of Objects with Instance-specific
Behavior

Fabrik [51] is a visual programming environment that allows visual program-
ming by connecting components dragged out of a parts bin. A composition
could then be put back into the parts bin for use elsewhere. The parts bin is
not shared and the environment not collaborative. We explored in previous
work howwe can transfer concepts of Fabrik to the Lively Kernel and imple-
mented with Lively Fabrik [71] a Web-based version as an application on
top of it. Lively Fabrik is an end-user programming environment allowing
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to create user interface and functional components and connect them using
wires to program in a data-flow style. The environment can be used to
interactively create mashups [113] and Web-widgets, but different to the
scripting facilities in Lively Webwerkstatt, it cannot evolve or extend the
underlying Lively Kernel.
Second Life [91] is a virtual 3D world where most content is generated

by users. Users can create and modify graphical objects, which are made
of graphical primitives and scripts. These objects can then be shared with
other users by selling them or giving them away for free. Granting editing
rights allows users to work together on the same objects. Since the creation
of active content is domain-specific, the Second Life user interface and tools
cannot be extended from within the system as it is possible with the Lively
approach.
Besides being a self-supporting system as discussed in Section 7.1,

Squeak//Smalltalk [49] can be used as a personal multimedia authoring en-
vironment [39]. It has also a parts bin, where objects can be dragged out.
Squeak is a class-based system and programming objects directly is not
the intended way to extend the system, except in the case of the Etoys
framework.
The SuperSwiki [90] allows users to share Squeak Etoys [54, 82] projects

over the Web. Projects are containers, similar to Lively worlds, for user-
created content built from objects and scripts. Unlike Lively Werkwerkstatt
it is not Web-based and self-supporting, since the environment is imple-
mented with Smalltalk and cannot be evolved with pure Etoys.
Many end-user programming environments have built-in repositories to

allow their users to share content. A representative example is Scratch [87],
a Squeak-based multimedia tile scripting programming environment for
children that evolved from the Squeak Etoys work. In Scratch, sharing and
remixing of projects plays an important part for being a “more social” pro-
gramming environment. Children are encouraged to publish their projects
from Scratch directly to the Scratch community website, where children
can directly play with the projects (via a Java plug-in) and download them.
As in Etoys, the unit of sharing is the project. Individual scripts and sprites
can be copied from one project into another, but Scratch has no central
repository of reusable parts.
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Yahoo! Pipes1 is a Web-based end-user programming environment that
allows users to graphically wire together components to mashup Web-
resources and produce RSS feeds. Those pipes can be shared and copied,
modified, and reused by other users. Before a pipe can bemodified, the user
has to copy the pipe to its own set of pipes. Yahoo Pipes is domain-specific
and, therefore, does not allow the creation of general active Web content.
The main difference between these restricted end-user development en-

vironments [63] and Lively Webwerkstatt is that they do not allow its users
to create objects and tools that evolve the system itself. All of these envi-
ronments distinguish between tool and material level [89, 47]: they put the
editor as a tool on a different level than the script that is edited. This sepa-
ration prevents tools from breaking tools, but also makes the environments
inherently not self-supporting. It is clear that not all users want to have
such a level of freedom and power, but building such freedom into a system
allows its users to adapt it in unanticipated and hopefully interesting and
useful ways.

7.4 Context-oriented Programming
As discussed in Section 3.3, dynamically scoped behavioral variations can
be used as scaffolding means for development in self-supporting environ-
ments. ContextJS as introduced in chapter 4 is a Context-oriented pro-
gramming implementation for JavaScript. Context-oriented programming
as an approach for dynamically scoping behavioral adaptations at run-
time was initially developed for Lisp [21] and Smalltalk [42], but later also
implemented in various languages [4].
Original Scoping Mechanism. Most COP language implementations pro-

vide control flow-specific scoping as introduced in Section 4.1.1. Con-
textL [21, 22], based on Lisp and the Common Lisp Object System (CLOS),
was one of the first COP extensions to a programming language. Layers
can be defined for classes, functions, and methods.
Following ContextL and ContextS for Smalltalk [41], several meta-level

libraries for dynamic programming languages were developed, namely

1http://pipes.yahoo.com/ (visited 2014-09-13)
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ContextR [94] for Ruby, ContextPy [43] for Python, and ContextG for Groovy.
For the statically typed language Java, some COP prototypes [42, 8] and
the compiler-based extension ContextJ [5] have been developed. A minimal
subset of ContextJ, cj, was implemented for the delMDSOC kernel [93].
Implicit Layer Activation. The Python language extension PyContext [125],

supports a variant of implicit layer activation where layers can determine
if they are active. Layers can provide a method evaluating an activation
condition before layered method invocations. This approach allows imple-
menting activation mechanisms for specific layers, but it cannot change the
entire layer composition. With our approach such implicit layer activations
could be achieved by implementing an object-specific layer composition
that delegates the layer activation to registered layers.
Event-specific Scoping. In some application domains, such as adaptive

user interfaces, behavioral variations should be active depending on events
rather than to control flows. Events can occur at various points in an execu-
tion that may not be obvious in the source code. The Java-based languages
JCop [7] and EventCJ [52] address this problem by providing declarative
composition statements adopted from aspect-oriented programming [57].
These declarations describe join points at which certain layers should be
composed. Using AOP for implementing domain-specific scoping of layer
activations is an alternative to using our ContextJS’s open implementation.
Both use some form of additional computation to let developers express
scope in their domains.

7.5 Dynamically Scoped Behavioral Adaptation
With scoping strategies approach [114], variables are not either statically or
dynamically scoped; instead, developers can parameterize variable bind-
ings. A scoping strategy is specified with functions implementing the
propagation and activation of a binding. While that approach opens the
scoping implementation of variable bindings, ContextJS opens the scoping
implementation of layer activation.
The Ambient Object System [36] (AmOS) supports context-orientation.

AmOS is a prototype-based object system built on top of Common Lisp that
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supports behavioral adaptations with partial method definitions and con-
text objects, which correspond to COP layers. At any method call in AmOS,
receiver methods are first looked up in the current activation and then in
enclosing lexical scopes. If no appropriate method is found in the lexical
scope, the lookup continues in a graph of context objects delegating to each
other. The delegation chain between these context objects can be modi-
fied dynamically, achieving context-specific behavior. Unlike ContextJS,
AmOS does not support the (open) implementation of domain-specific
scoping strategies like structural-specific scoping of behavioral adaptation
in a hierarchy of graphical objects.
Aspect-oriented programming (AOP) [57] aims to tame crosscutting con-

cerns by introducing pointcut-based quantification. The main distinction
between AOP and COP is that the former allows for a joint specification
of when in the execution flow what kind of functionality should be used,
while COP separates when (using with statements) from what (using layers
and partial methods). For a comparison of AOP and COP as appropriate
representation of behavioral variations, we distinguish between homoge-
neous and heterogeneous crosscutting concerns [3]. Homogeneous crosscuts
execute the same functionality at multiple locations in a control flow, for
which AOP provides well suited abstractions. AOP implementations of
heterogeneous crosscuts tend to be less understandable to developers than
layer-based implementations [3], since they have to mimic COP behavior
using pointcuts with dynamic conditions and advice that are complex and
fragile for changes.
There are various approaches to deal with AOP advice code triggering

its own pointcuts directly or indirectly. In AspectJ the cflow pointcut desig-
nator allows (de-)activating an aspect in a specific control flow. Another
approach to avoid the endless regression caused by aspects directly or
indirectly calling themselves, are execution levels for AOP [115]. In this
approach, the problem of conflation [20] of base and advice code is solved
by executing them in different levels. By default aspects only observe the
execution of specific levels, thus avoiding endless regressions.
These execution levels are also implemented inAspectScript [119], an AOP

implementation for JavaScript. AspectScript aims for expressibility and,
therefore, has to rewrite all JavaScript code. This makes the code several
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times slower, even if no aspects are active. ContextJS does only instrument
methods that are refined by layers, which lets JavaScript code that is not
refined by any layer run at full speed.
Perspectives in the subjective programming language Us [101] are a way to

describe the scope of behavioral variations. Us changes message passing of
Self [122] to incorporate perspectives on layers. Perspectives define a fixed
layer composition by statically connecting a layer with its parent layer. This
implies that layers in subjective programming—unlike COP—cannot be
part of different compositions at the same time. The problem of breaking
tools during the development of interface code was explicitly mentioned as
an application of perspectives. One of the examples shows howperspectives
are used to try out and combine different changes. The authors describe
a fallback approach for a debugger to a safer perspective. Us was never
implemented [123].
Classboxes [12, 11] support static scoping of behavioral adaptations. A

classbox is an explicitly named scope in which classes and their members
can be defined. Besides common subclassing, Classboxes support local re-
finement of imported classes by adding or modifying their features without
affecting the originating classbox, much like layers and partial methods.
Since scoping is only controlled by the import and use of objects in amodule,
structural and instance-specific scopes cannot be expressed by Classboxes.
ChangeBoxes [25] are a mechanism that allows managing multiple devel-

opment branches of an application within a single, running environment.
It allows, for example, modifying a deployed and running application by
doing the development in a change box. Inside that change box the new
behavior can be safely developed and tested before it is merged into the
running application. Since change boxes work on a Smalltalk project level
individual tools cannot be separated so they can be safely adapted. But
similar to CoExist, ChangeBoxes could in principle be employed as an ad-
ditional safety net for developing in Smalltalk, providing a fallback in case
the tools were broken.
Alternative approaches to inheritance, such as traits [100, 27] and mix-

ins [13], allow for an additional inheritance relationship orthogonal to the
class hierarchy, but do not offer dynamic adaptation like layers.
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Refinements as introduced with Ruby 2.0 are an example of restricting
the scope of library adaptation, known as monkey patches to the Ruby com-
munity. By default such monkey patches are globally scoped and replace
the original behavior. This leads to problems when two libraries patch the
same behavior in the base library in conflicting ways. As a solution Ruby
2.0 introduced refinements as an experimental feature to localize monkey
patches. Refinements allow replacing methods of a class in the lexical con-
text of ruby files. This has the effect that they are only partially useful,
since they can only adapt the direct usage of a method in a library, but not
indirect ones. Unlike behavioral adaptation through COP, refinements are
only available in the lexical scope, e.g. when directly called from a file that
uses that refinement. If the method would be indirectly called by a method
defined in the base system or other libraries, the refinement would not be
active. This is not very powerful, since the method invocations are already
in control of the adaptation writers, they could have called helper objects
of their own. The method invocations that programmers do not have direct
control over are the interesting ones and the hardest to adapt.
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8 Summary
This thesis has discussed self-supporting development environments and
how they allow adapting applications and the systemwith its programming
tools at run-time. Lively Kernel combines this approach with collaborative
Web-based development. The resulting wiki-like environment supports
both user-level collaboration and shorter feedback-loops during develop-
ment at run-time.
Because of reflection andmeta-circularity, developing in a self-supporting

environment inherently has the danger of breaking your own tools. In
a shared environment like a Lively Wiki the impact can be more severe
since dangers can and often do affect more than one user. In this thesis
we developed approaches that mitigate this problem by allowing for a
controlled but still immediate adaptation of tools at run-time and in the
collaboratively shared environment.

8.1 Contributions
The key contributions of our approach to self-supporting evolution of a
collaborative Web-based development environment are:

Lively Parts By building tools as user-modifiable graphical objects, they
can be adapted directly while being used. The deep cloning of an entire ob-
ject composition as a lively part serves two purposes: first, the development
at run-time is made more robust, because modifying a cloned tool does not
interfere with other similar tools of the same kind including the one used
to perform these modifications. Second, publishing parts in a shared parts
bin allows for wiki-like collaboration that involves both programming and

143



Summary

direct manipulation of objects since not all shareable modifications require
editing of source code.

Development Layers The base system provides behavior that affects all
objects in the environment. To adapt the base system at run-time, context-
dependent layers (COP) allow controlling the scope of changes during devel-
opment as needed. Further, separated changes allow sharing experimental
features that can be safely explored by other users. In our approach, lay-
ers serve as scaffolding during development. The scaffolding can later be
removed by merging the changes into the base system.

Open Implementation of Layer Composition COP allows adapting sys-
tem behavior by composing layers at run-time. Ourworkwith Lively Kernel
helped identify the need for more flexible domain-specific scoping strate-
gies. In ContextJS, our COP language extension for JavaScript, we provide
an open implementation of layer composition that allows for new scoping
strategies such as structural-scope that takes the composition hierarchy of
graphical objects into account.

Object Derivation History When different clones of objects (parts) have
to be merged back together, because they where independently developed,
a merging algorithm cannot rely on object identifiers any more. The object
identifiers have changed, because a clone has to coexist with its original
object in the same environment, so the clone and all its cloned subobjects,
received new identities. Maintaining an object-specific history of former
identities (derivation history) as meta-information helps identifying moved
subobjects and finding a common ancestor for automatic merging.

8.2 Future Work
The self-supporting development of Lively Webwerkstatt spawned interest-
ing questions in broad a field.
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Reification of JavaScript Execution When building a development envi-
ronment, we need full control over the code we are running at development
time, for example, to slow down execution or to visualize its execution
state like in live programming [124]. But due to security limitations, the
Web-browser limits the reflectional capabilities of JavaScript. For example,
it is currently not possible to interrupt out-of-control programs [127]. This
limitation of the JavaScript virtual machine can be circumvented by execut-
ing all user code in an interpreter or rewriting the code appropriately. We
currently experiment with approaches for implementing a debugger for
JavaScript [95] that can debug code inside a browser without support of
the surrounding JavaScript virtual machine.

Script Derivation History Copying source code is considered a bad pro-
gramming style. It increases redundancy thatmakes it harder for developers
to deal with the amount of code. For example, if a bug is fixed or a feature
is added in the source, the bug remains in the copy (or vice versa), if they
are not changed simultaneously. If the copied code should be changed,
developers have to locate every copy and apply the change manually –
to the extent that they still have control over them. Unlike the cloning of
objects, when copying text, this derivation information is lost, since copying
can only be traced by matching the text. In Lively Webwerkstatt, we only
trace the cloning of objects, but scripting objects also involves the copy and
paste of individual functions or other source code snippets. Preserving and
using this information should provide a derivation history on the level of
functions.

CopingwithRedundancy The redundancy introduced by cloning objects
can become a problem: when a new feature is prototyped in an object and
this object is duplicated and used in multiple locations, changing that
behavior in all copies may become difficult. As long as the new objects are
still only in oneworld, we canmigrate new features or bug fixesmanually or
by using scripts. We experimentedwith a special version of the object editor
that allowed to edit multiple instances at once [32], which mitigated this
problem when the objects with the cloned behavior are in one world. But
what if the object was already copied to different worlds? Developers have
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to search through all worlds andmigrate all copies of the object individually.
Some objects may even not reachable because they are in private space or
in different repository. Therefore, automating this process and replacing it
with smart object migration is part of our future work.
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