
Lively Fabrik - A Web-based End-user Programming Environment

Jens Lincke1 Robert Krahn1 Dan Ingalls2 Robert Hirschfeld1

1 Hasso-Plattner-Institut, University of Potsdam
{jens.lincke, robert.krahn, hirschfeld}@hpi.uni-potsdam.de

2 Sun Microsystems Laboratories, Menlo Park
dan.ingalls@sun.com

Abstract

Lively Fabrik is a Web-based general-purpose end-user
programming environment. Based on the Lively Kernel,
Lively Fabrik extends the ideas of the original Fabrik system
by empowering end-users to create interactive Web content
entirely within their Web browsers. Web applications cre-
ated with Lively Fabrik typically combine Web sources, data
manipulation, and interactive user interface elements. The
result can be a Mashups, but due to the powerful underlay-
ing system, any general-purpose application. Connecting
components with wires and scripting components is all that
is needed to do so.

1 Introduction

More and more end-users treat the Web browser as their
operating system [17]. Besides reading the Web, they man-
age their personal correspondence via email, contribute to
Wikipedia articles, or collaborate in online spreadsheets.
The creation of Mashups [12] by combining Web-based ser-
vices from different sources into a single application dedi-
cated to a particular task, and the customization of exist-
ing Web applications like content management systems are
other examples of end-user development that have become
popular.

Even though development support in these areas exists
for restricted domains, usability and simplicity offered to
the end-users are still lacking. One disadvantage of Web-
based applications compared to their non-Web counterparts
is that the Web programming model is still deprived of the
rich capabilities that come with traditional desktop environ-
ments.

In an effort to remedy this situation, we have designed
and implemented Lively Fabrik, a rich Web-based end-user

programming environment built on Lively Kernel [5] and
based on Fabrik [6]. Lively Fabrik is an environment that
empowers end-users to interactively create their own dy-
namic Web applications from within their Web browser in-
stantly and without the need to upload or download any-
thing.

We want the user to create a user interface, to program,
and to play with the final product in one environment and
thus make development iterations simple and short. Be-
cause we want to make the application creation as direct
as possible, we do not separate the programming process
from the process of creating the user interface as it is good
practice in software engineering.

Graphical and textual scripting languages are widely
used in end-user programming scenarios. Data-flow
paradigms have their merits when it comes to dealing with
large amounts of data and when they fit naturally into
domains where data is retrieved, filtered and combined.
We combine these two approaches in Lively Fabrik: we
help end-users structuring their programs with the data-flow
paradigm and provide scripting for cases where data-flow is
complicated or limiting.

Lively Fabrik is Web-based, because many end-users are
not allowed to install third party software on the computer
they are using but have a modern Web browser at their
hands. This may be because they are in an Internet café
or they are using a pool computer. Other positive aspects
of the Web-based approach is the capability for automatic
software updates as well as collaboration between the end-
users [15] and sharing of content.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a short introduction into end-user Web applica-
tion development. Section 3 describes the visual Web-based
end-user programming environment Lively Fabrik. Sec-
tion 4 discusses implementation details. Section 5 shows
the usage of the environment by creating a weather widget
Mashup. Section 6 discusses related work and Section 7



makes a summary and gives an outlook.

2 End-user Web Application Development

The state of the art tools for authoring content in the
browser include native Web applications like Wikis and
content management systems and Web versions of typical
desktop applications like word processors, spreadsheets, or
drawing programs. These Web applications allow the of-
ten collaborative creation of passive media like texts, tables,
and pictures. Other tools are specialized on online creation
of Web pages and special applications like Web shops. All
these online applications are limited when it comes to pro-
gramming in the browser and specifically programming for
end-users in the browser.

Web-based programming is different from programming
on personal computers. Programmers have to cope with
client/server aspects, security limitations, less CPU cycles
to burn, and inferior libraries. For example, the access to lo-
cal files and services on the client side is restricted because
of security reasons. Some of these issues are addressed by
advancements in browser technologies like faster JavaScript
virtual machines and more powerful browser APIs. Other
issues such as the security limitations have to be dealt indi-
vidually. For example, if JavaScript applications need ac-
cess to the Internet a solution is to provide a Web proxy on
the server of the original JavaScript source file.

Building real applications for a Web browser in itself was
a challenging activity, but it gets easier with the evolution
on browser technology. We want to go further and enable
end-users to create their own applications, without having
to struggle with the limitations of the Web environment.

An important domain of end-user programming in the
browser is the creation of Mashups. A Mashup (for an
overview see [12]) is a recombination of different Web
pages or services in a new and often unanticipated way. It
typically consist of a script running on a server, that fetches
data from different sources and produces new Web content.

We want to create an end-user development environment
to create simple Web-applications like Mashups or widgets.

3 Lively Fabrik - Visual Web-based End-user
Programming

Lively Fabrik brings the ideas of Fabrik [6, 9] and Lively
Kernel together to create an environment for end-users,
where they can build their Web applications in a very di-
rect and responsive manner.

We combine scripting and data-flow programming as
well as a rich graphical environment to provide a Web-
based end-user programming environment for dynamic
Web pages.

Figure 1. A visual program in the original Fab-
rik that generates a bar chart (Source [6])

3.1 An Environment for End-user Pro-
gramming

Lively Fabrik is designed as an uncomplicated environ-
ment for creating Web Applications. User interface ele-
ments and program behavior are authored in one place.

Furthermore, we want to reduce the complexity by pro-
viding a distinct and small set of concepts and principles
to keep things simple. Our building blocks are connected
components where data flows from one component to the
other through wires.

3.2 Components

Applications in Lively Fabrik can be build from very few
elements, thus lowering the conceptual complexity of pro-
gramming. The main elements are components, pins and
connections between them. Components manipulate data,
create data or trigger side effects. Pins define the interface
to components and are the endpoints of connections. Lively
Fabrik defines a set of primitive components which are not
created in Fabrik itself. These components are:

Input and Output TextComponents display strings which
can be both user input or data from other components.

ListComponents have an input pin ’List’ and an output
pin ’Selection’. They show arrays and allow the user to
select elements from it.

ImageComponents load and display images from speci-
fied urls.

Scripting FunctionComponents allow the evaluation of
JavaScript. The scripts can access any number of pins for in

2



and output. By default there is a pin ’Input’, which is a pa-
rameter to the function, and a pin ’Result’, which automati-
cally gets the return value of the JavaScript code assigned.

Wrapping PluggableComponents are used to wrap nor-
mal Lively Kernel widgets that are dropped into a Fabrik.
Widgets have a formal interface from which a pins can be
generated and enable the widget to act as a component in
Fabrik.

Web Requests WebRequestComponents retrieve data
from URLs. They could be implemented with Function-
Components but are provided for convenience reasons.

Encapsulation With FabrikComponents users are em-
powered to create their own components. FabrikCompo-
nentsact as containers for other components and encapsulate
them: Components inside a FabrikComponent cannot di-
rectly be connected to outside components. The only means
to do this is a indirect connection via pins of the Fabrik-
Component. FabrikComponents can be collapsed for hid-
ing internal components. When a user frame is added to
a FabrikComponent, components in this user frame are not
hidden.

3.3 Pins and Connectors

When the users want to connect two components, they
click on the pin of the first component and then on a pin
of the second component to establish a directed connection
between those components (respectively their pins). A con-
nection between pins means: when the value in the pin of
the first component changes, it is copied to the other pin.
Thus the connection is directed. Bidirectional connections
are created by reverse connecting two pins. Connections are
not allowed to cross the borders of a FabrikComponent, this
maintains order and avoids ’wire-chaos’.

3.4 Enhancing the Data-flow Principle
with Scripting

We have chosen wiring components as visual data-flow
paradigm because it is intuitive and most users think in
terms of data going from one place to another [2, 7].

Lively Fabrik does not restrict the type of data that flows
from pin to pin. A component can write references into
pins, that makes it possible to work with complex objects
like Morphs and does not restrict the graphical languages to
primitive data values like numbers, strings, points or rect-
angles.

Although the data-flow principle is very expressive, data-
flow programming languages have their shortcomings.

Figure 3. Bidirectional Fahrenheit Celsius
converter in the original Fabrik (Source [6])

The original Fabrik demonstrated bidirectional data-flow
with a Fahrenheit to Celsius converter as seen in Figure 2.
While not all users may be comfortable with the backwards
operation of a ’×÷’ or ’+ -’ component, we think that bidi-
rectional data-flow can be an enriching feature when used
at the right level. So we combine the overall data-flow be-
havior with a simple imperative scripting language inside of
components. We used JavaScript as a scripting language but
we are planning to integrate a visual tile scripting language
such as Etoys [8], Scratch [10], or TileScript [18] to make
the scripting part more end-user friendly.

Introducing an imperative language has its costs, the user
has to cope with possible syntax errors and it violates the
data-flow paradigm by possible access to global variables.
By exposing the user to real source code only in a very nar-
row scope of FunctionComponents, many problems with
textual languages are limited to the component where the
user can fix it without having to browse a whole source code
file.

3.5 User Interface

The basic user interface of Lively Fabrik consists of
dragging and dropping components and connecting them
afterwards. To fit the components better into the data-flow
and to minimize crossings of connections the position of
the pins can be changed by dragging them (as described
in [9]). This leads to cleaner looking layouts. Other visual
languages use fixed positions for connection points to asso-
ciate spatial positions with functional behavior. To compen-
sate this, we keep pins apart by varying color and potentially

3



Figure 2. Fahrenheit Celsius Converter with FunctionComponents for each direction in Lively Fabrik

shape and display names in help balloons.

Bringing Together User Interface and Behavior In con-
trast to typical user interface builders and visual languages
like LabView [3], Fabrik allows the user to create the user
interface and the behavior in one place. This makes the
programming more concrete, because there is one layer
of indirection less in the system. FunctionComponents,
pins, and connections can be hidden by specifying a region
with a UserFrame. The UserFrame distinguishes elements
that should be visible when the encapsulating component is
reused. All components inside that UserFrame become the
user interface for the encapsulating component.

Continuous Running Many end-user programming sys-
tems distinguish between creating programs and running
them. So there is often a ’run’ button that executes the pro-
gram after its creation. This can lead to a long time where
an initial program is created by the user but not executed.
To solve this, dynamic systems often have a tight feedback
loop where parts of the program or short snippets of code
can be evaluated and tested, which makes things simpler
and more interactive.

The use of a visual programming language allows us to
go a step further, by manipulating the running program and
objects directly, end-users can grow their program seeing
the results of their changes instantly. This way of program-
ming can occasionally frighten users, so we must assure,
that while increasing the expressive power and possibilities
of Lively Fabrik, users cannot accidently destroy their own
work or valuable data. Having a browser and a Web-server
between users and their data allows the integration of auto-
matic versioning, which is not available in the interaction
with files in an ordinary operating system.

Visual Aids The user interface of Lively Kernel inherits
its directness and liveliness from Morphic [11], this enabled
us to experiment with non standard user interfaces like halos

as in Etoys [8]. We use these visual aids to show the state
of the program to help users debugging their program. This
should be further improved in the future, for example by
displaying annotations of values, visualizing unused com-
ponents, showing errors in the data-flow, or making visible
how often a connection is used.

4 Implementation of Lively Fabrik

4.1 Architecture Overview

We separated the user interface and the domain model of
our components as shown in Figure 4, because it allowed
better development and automatic testing of the core com-
ponent functionality.

Components, Models, and Morphs Components have a
rectangular shape and contain user interface elements like
text fields, buttons, and pins. We use NodeRecords as mod-
els, they store fields of values and object references and pro-
vide accessors and generate update events for registered ob-
servers. These update events make it easy to implement our
data-flow model.

Morphs act as a view on models and components and are
responsible for user interaction.

Pins and Connectors The data flows through connectors
from pin to pin. This data-flow is implemented with an
observer pattern that is provided by Lively Kernel. Pins
and connectors use Morphs as their graphical representation
and manage the observer relationships between component
fields. Currently, connections are simple lines that have to
be laid out manually but we plan to replace them by curves
and add layout support, because the ease of use of connect-
ing pins is very important.

4



Figure 4. Lively Fabrik Core Architecture

4.2 Data-flow

There are many ways to coordinate the data-flow through
a graph of components. Lively Fabrik does not have an
overall rule but moves the responsibility to the component:
each component decides for itself how to react on changes
in pins. For example, a TextComponent displays a value, a
WebRequestComponent retrieves content from the Web and
a FunctionComponent evaluates its contents and produces
an output. There can be cases when a FunctionComponent
should wait for a set of new inputs, because they perhaps
belong together, but for now we produce a new result for
any change in input pins. Furthermore, there is no mecha-
nism that stops circular loops in our implementation other
than only propagating changes, when there is a real change.

4.3 Asynchronous Components

Components may not immediately produce an output to
a given input. The WebRequestComponents take URLs as
inputs and asynchronously perform a XMLHTTPRequest
with the GET method. The response from the Web server
is later written into the output pins. The output pin ’Re-
sponseText’ then gets a string version of the XML response
assigned and the output pin ResponseXML gets a list of ob-
jects, each representing a XML tag of the response XML.
Every of these objects has an attribute ’xml’ and an attribute
’js’, carrying a XML element respectively a recursively con-
verted Javascript object of the XML element.

4.4 Integration with Lively Kernel

Lively Fabrik aims for a strong integration into the
Lively Kernel to make graphics and widgets available that
where not specially made for Fabrik.

Standard Lively Kernel widgets can be used as compo-
nents in Lively Fabrik. They are wrapped by Pluggable-
Components which automatically generate pins from the
model to provide an interface. An example for wrapped
widgets is the ClockMorph that when dropped into Fabrik
can act as source of ticking events to create animations.

For creating graphics, the Morphs of the Lively Kernel
can be used. They can flow as references from one compo-
nent to another, so that one component creates a Morph, the
next sets some attributes and last moves it. The use of ref-
erences violates the data-flow concept and collides with the
change update mechanism, but it is a straightforward way
to interact with the whole Lively Kernel.

Fabrik components can contain and encapsulate other
components. This mechanism can be used to group be-
havior and abstract it into one component. Components in-
side a Fabrik can communicate to other components outside
through the clear interface of pins. By copying the container
component the behavior can be reused and shared.

4.5 Storing Fabrik Content

Lively Fabrik components are stored as other objects in
the Lively Kernel as nodes in the DOM and serialized by
the browser. Thus, not only main content such as the com-
ponent types, their connections, and their current data is
stored, but also their Morphs so that the user can customize
the visual appearance without having to program. This may
lead to conflicts in future versions, because the user may ex-
pect that his content updates itself in some ways and keeps
the user changes in others.

Copy-and-paste of scripts for the purpose of customizing
them is a crucial activity in end-user development. This is
easy for text-based languages but difficult in a graphical en-
vironment, so visual scripts can only be shared by explicitly

5



importing whole projects or in the worst case by rebuilding
everything from scratch according to a picture. By using
the system clipboard and the serialization mechanism of the
Lively Kernel, Fabrik components can be copied from one
browser page to another.

5 Bringing It All Together

In the following, we describe the construction of a
more complex Lively Fabrik application, a weather widget
Mashup that queries a Web-service and has a nice user in-
terface.

Figure 5. The user can enter the name of a
city or a zip in the topmost input field to see
the current weather conditions

Figure 5 shows the weather widget which allows users to
type the name of a city or a zip code into the input field at the
top of the component. The component then displays current
weather conditions for the place as textual and graphical
information below. This new component can be assembled
by a user who is familiar with the basic Fabrik components.
It can be saved inside a Lively Kernel world for publishing it
in the Web. Other users are then able to use the widget, or if
they intend to extend or change it, they can just ’uncollapse’
the hidden parts of the application and modify them.

Basically, the construction of the weather widget con-
sists of three parts:

• Requesting weather data via a Web service,

• Extracting and filtering this data from the result of the
request,

• Creating a user interface for obtaining input and dis-
play output information.

To begin, a new FabrikComponent is dragged from the
ComponentBox into the Lively Kernel world. Then a We-
bRequestComponent is dropped inside it. This component
takes a URL as input and generates an XMLHTTPRequest
using the HTTP GET method, thus retrieving data from
the Web. For obtaining the weather data a Google ser-
vice is used. The weather for Tokyo, for instance, can
be retrieved by writing http://www.google.com/
ig/api?weather=Tokyo into a WebRequestCompo-
nent. When the request is completed, the ’ResponseXML’
pin of this component will carry a list of objects, each
having two attributes: An attribute xml which points to
an XML element (one for each tag) and an attribute js
which is a JavaScript object generated from the XML ele-
ment. It contains, recursively converted, all XML attributes
and child nodes as ordinary object properties, thus allow-
ing users to access the XML data without knowing anything
about the DOM API or XML queries. When the ’Respon-
seXML’ pin of the WebRequestComponent is connected to
a ’List’ pin of a ListComponent it shows a string represen-
tation of every element in the XML document.

The ListComponent now allows the selection of an ob-
ject referencing sub elements of the XML tree which can be
used in other components. Figure 6 shows the Web request
part of the weather widget. Because the user should be able
to pass in a city name or a zip, the URL will not be directly
written into the WebRequestComponent. Instead, it will be
produced by a FunctionComponent which concatenates the
constant part of the URL with the city/zip. The result is
the input for the WebRequestComponent which is then con-
nected to two ListComponents. As described above, these
are used to select parts of the provided information, namely
the tags ’forcast information’ and ’current conditions’.

To complete the request part, three new pins are added
to the FabrikComponent: An input pin named ’Zip’ which
will be connected to the FunctionComponent, and two out-
put pins ’Info’ and ’Condition’ which are connected with
the ListComponents. When this is done, this part of the wid-
get is finished and can be collapsed for hiding the internal
components (the three pins of the FabrikComponent itself
will not be hidden, they define the interface which can be
accessed from the outside). To continue development, the
FabrikComponent is embedded into another, newly created
FabrikComponent by dragging and dropping.

In the new FabrikComponent (see Figure 7) the com-
ponents used for the user interface will be added. To get
started a TextComponent is necessary which will take the
city/zip. It will be connected to the ’Zip’ pin of the embed-
ded FabrikComponent. When a valid city/zip is entered in
the TextComponent the selected results of the request will
appear on the ’Info’ and ’Condition’ pins of the embedded
FabrikComponent.

As mentioned above, these are objects that contain se-

6



Figure 6. Requesting data from a URL and extracting information from the received XML

Figure 7. The complete Weather component. For simplification the component from Figure 6 is
collapsed.

lected XML data, both the raw XML as well as a JavaScript
object generated from it. To get, for example, the Celsius
temperature, the user can connect the ’Selection’ pin of the
ListComponent containing the selected ’current condition’
tag to the ’Input’ pin of a FunctionComponent. The in-
put variable then references the object bearing the converted
XML data.

To avoid creating a FunctionComponent for each
TextComponent, multiple outputs from one FunctionCom-
ponent are realized by creating the required number of out-
put pins and then setting the values for those pins using
JavaScript inside the ’FunctionBody’.

Now all components are created and connected. A User-
Frame is drawn around the TextComponents and Image-
Components simply by clicking in an empty area of the Fab-
rikComponent and dragging the frame so that it contains all
components which should be seen by a user. As shown in
Figure 5, when the FabrikComponent is collapsed all com-
ponents that are inside the user frame will remain visible,

but their connections and pins are removed from the view.
This example showed the construction of a more ad-

vanced Lively Fabrik application. New components are
created by connecting existing components graphically and
writing small scripts. All of this is done at run-time. This
means that interim results can easily be debugged during
construction by inspecting pin values or adding Function-
Components and using JavaScript for debugging. This al-
lows the quick detection of bugs and enables users to rapidly
evolve Lively Fabrik applications. Due to this simplicity
and the effortless creation of new abstraction we believe
that Lively Fabrik is capable of creating much more com-
plex systems than the one described.

6 Related Work

Lively Fabrik is named after the experimental interac-
tive programming environment Fabrik [6, 9]. In Fabrik pro-
gramming was done by placing components in a graph and

7



connecting them with wires. It integrates the programming
process and the creation of the user interface in one environ-
ment. Fabrik uses the structure data-flow model and thus
is timeless and allows connections to be potentially bidi-
rectional. User interface elements support user input and
the program cannot only print results, but generate graph-
ics, for example for creating diagrams. The original Fab-
rik is implemented in Smalltalk and uses code generation
to speed things up. Lively Fabrik’s FunctionComponents
directly create JavaScript functions that can be evaluated
without generated classed or a graphical representation.

Many visual programming languages use the metaphor
of data-flow, popular representatives are LabView [3] and
the Visual Language in Microsoft’s Robotic Studio [14].
An overview of current visual data-flow languages is given
in [7].

Another approach to end-user development of Web ap-
plications is described in [16]. Rode et al. surveyed ca-
sual Web masters without programming knowledge as their
group of end-users. The resulting tool phpClick is meant
for basic data collection, storage and retrieval applications.
Mashups and more graphical Web applications are not in
their focus.

There are browser-based products such as Yahoo
Pipes [19] and Microsoft Popfly [13] that allow users to gen-
erate Mashups, but they are restricted in their ability to inte-
grate the results into Web applications. Yahoo Pipes gener-
ates restricted views to display the output and provides the
result in form of feeds for reuse in other contexts. Popfly
lets users integrate created widgets into their own Web ap-
plications (via copy and paste JavaScript code, and other
ways) but there are few end-user Web environments for cre-
ating general Web applications.

The data-flow paradigm is not only used in end-user en-
vironments for creating Mashups, but it has a also an appli-
cation in operating system scripting. Apple Automator [1]
is an end-user development tool for automating applica-
tions and the Macintosh operating system. It uses a pipe
metaphor in which data flows like in pipe from the top to
the bottom from one action to the next (actions correspond
to our components). In this mainly linear flow loops and
variables are possible, but they don’t fit in naturally into the
system. Some Automator actions provide access to Unix
shell scripting and AppleScript [4]. This combination of
overall data-flow with scripting inside of actions makes it a
very open and powerful system.

7 Summary and Outlook

We have designed and implemented Lively Fabrik, a
Web-based end-user programming environment. To make
system development more appealing to end-users, Lively
Fabrik combines the data-flow of visually wired compo-

nents with dynamic scripting capabilities. In Lively Fab-
rik, end-users do not have to split their work on the appli-
cation’s core behavior from the associated graphical user
interfaces, since these can be easily and automatically sep-
arated if needed. With Lively Fabrik being part of a client-
side interactive Web application environment, there is no
need to install or update a development environment, since
end-users have instant access to an always current and rich
programming substrate.

As of today, Lively Fabrik has only basic support for the
collaborative development of Web applications. We plan
to extend these capabilities to experiment with near real-
time collaboration in a widely distributed Web-scale envi-
ronment. Lively Kernel’s entire functionality can be made
accessible through our FunctionComponents. To improve
modularity and with that comprehensibility of more com-
plex applications, we will provide means similar to pro-
cedural abstraction to group, extract, and offer abstrac-
tions meaningful and useful in particular programming situ-
ations. Examples are Web content extraction, filtering, syn-
dication, and the provisioning of graphical objects for direct
interaction.

Integrating tile scripting languages like Etoys [8] or
Scratch [10] seems to be a promising alternative to
JavaScript in FunctionComponents. TileScript [18] is a
convincing example of how a textual scripting language
like JavaScript can be transformed into a visual represen-
tation and back. Combined with the graphical capabilities
of Lively Kernel, this may result in an Etoys-like system in
the browser.

We are working on improving the usability of Lively
Fabrik based on feedback from actual end-users when ap-
plying our programming environment to creatively express
their ideas and solve their problems.

8 Acknowledgements

We thank Krzysztof Palacz for fruitful discussions, valu-
able contributions, and his creative work on Lively Kernel,
and Philipp Engelhard for for his comments on an early
draft of this paper.

References

[1] Apple. Automator: Doing Things Over and Over is Over,
2007. as of Sep 23 2008, http://automator.us.

[2] E. Baroth and C. Hartsough. Visual Programming in the
Real World. pages 21–42, 1995.

[3] R. Bitter, T. Mohiuddin, and M. Nawrocki. LabVIEW: Ad-
vanced Programming Techniques. CRC Press, 2006.

[4] W. R. Cook. Applescript. In HOPL III: Proceedings of the
third ACM SIGPLAN conference on History of programming
languages, pages 1–1–1–21, New York, NY, USA, 2007.
ACM.

8



[5] D. Ingalls, T. Mikkonen, K. Palacz, and A. Taivalsaari. Sun
Labs Lively Kernel, 2007. as of Oct 12, 2007, http://
research.sun.com/projects/lively/.

[6] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and
K. Doyle. Fabrik: a visual programming environment. SIG-
PLAN Not., 23(11):176–190, 1988.

[7] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances
in Dataflow Programming Languages. ACM Comput. Surv.,
36(1):1–34, 2004.

[8] A. Kay. Squeak Etoys Authoring and Media, 2005. as of
Aug 01, 2005, http://www.squeakland.org/pdf/
etoys n authoring.pdf.

[9] F. Ludolph, Y.-Y. Chow, D. Ingalls, S. Wallace, and
K. Doyle. The Fabrik Programming Environment. Visual
Languages, 1988., IEEE Workshop on, pages 222–230, Oct
1988.

[10] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and
M. Resnick. Scratch: A Sneak Preview. In C5 ’04: Pro-
ceedings of the Second International Conference on Cre-
ating, Connecting and Collaborating through Computing,
pages 104–109, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[11] J. H. Maloney and R. B. Smith. Directness and liveness
in the morphic user interface construction environment. In
UIST ’95: Proceedings of the 8th annual ACM symposium
on User interface and software technology, pages 21–28,
New York, NY, USA, 1995. ACM.

[12] D. Merrill. Mashups: The new breed of Web app. IBM Web
Architecture Technical Library, 2006.

[13] Microsoft. Popfly, 2008. as of Sep 23 2008, http://
www.popfly.com.

[14] S. Morgan. Programming Microsoft Robotics Studio. Mi-
crosoft Press, Redmond, WA, USA, 2008.

[15] Y. Ohshima, T. Yamamiya, S. Wallace, and A. Raab. Tin-
Lizzie WysiWiki and WikiPhone: Alternative approaches to
asynchronous and synchronous collaboration on the Web. In
C5 ’07: Proceedings of the Fifth International Conference
on Creating, Connecting and Collaborating through Com-
puting, pages 36–46, Washington, DC, USA, 2007. IEEE
Computer Society.

[16] J. Rode, M. B. Rosson, and M. A. P. Quiñones. End User
Development of Web Applications. In F. P. Henry Lieber-
man and V. Wulf, editors, End User Development, vol-
ume 9 of Human-Computer Interaction Series, pages 161–
182. Springer, 2006.

[17] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz. Web
Browser as an Application Platform: The Lively Kernel Ex-
perience. Technical Report SMLI TR-2008-175, Sun Mi-
crosystems, January 2008.

[18] A. Warth, T. Yamamiya, Y. Ohshima, and S. Wallace. To-
ward A More Scalable End-User Scripting Language. Cre-
ating, Connecting and Collaborating through Computing,
2008. C5 2008. Sixth International Conference on, pages
172–178, Jan. 2008.

[19] Yahoo. Pipes, 2008. as of Sep 23 2008, http://pipes.
yahoo.com/pipes/.

9


