
Web Browser as an Application Platform

Antero Taivalsaari and Tommi Mikkonen
Sun Microsystems Laboratories

P.O. Box 553 (TUT)
FIN-33101 Tampere, Finland
firstname.lastname@sun.com

Dan Ingalls and Krzysztof Palacz
Sun Microsystems Laboratories

16 Network Circle, MPK 16
Menlo Park, CA 94025, U.S.A.
firstname.lastname@sun.com

Abstract

For better or worse, the web browser has become a
widely used target platform for software applications.
Desktop-style applications such as word processors,
spreadsheets, calendars, games and instant messaging
systems that were earlier written for specific operating
systems, CPU architectures or devices are now written
for the World Wide Web, to be used from a web
browser. In this paper we summarize our experiences
in using the web browser as a target platform for real
applications. As a concrete example, we use the Sun™
Labs Lively Kernel, a system that implements an
exceptionally interactive web programming
environment running in a web browser without any
plug-in components. Based on this work, we analyze
the limitations, challenges and opportunities related to
the web browser as an application platform.

1. Introduction

The widespread adoption of the World Wide Web

has fundamentally changed the landscape of software
development. In the past few years, the Web has
become a popular deployment environment for new
software systems and applications. We believe that in
the near future the vast majority of new software
applications will be written for the Web, instead of
conventional target platforms such as specific
operating systems, CPU architectures or devices.

In general, the software industry is currently
experiencing a paradigm shift towards web-based
software. In the new era of web-based software,
applications live on the Web as services. They consist
of data, code and other resources that can be located
anywhere in the world. Furthermore, they require no
installation or manual upgrades. Ideally, applications
should also support user collaboration, i.e., allow
multiple users to interact and share the same
applications and data over the Internet.

In the era of web-based software, the web browser
will take an ever more encompassing, central role in
our lives. Among other things, the web browser will
take over many roles that conventional operating
systems used to have in serving as a launchpad and a
host platform for applications when they are run. In the
eyes of the average computer user, the web browser
will effectively be the de facto operating system.

In this paper1 we summarize our experiences in
using a regular web browser as a platform for real,
desktop-style applications. As a concrete example, we
use the Sun™ Labs Lively Kernel (see
http://research.sun.com/projects/lively/) – a system
that pushes the limits of the web browser by
implementing an exceptionally interactive web
programming environment that runs in a web browser
without installation or any plug-in components
whatsoever. The absence of browser plug-ins makes
the Lively Kernel different from other web application
development systems such as Adobe AIR
(http://www.adobe.com/products/air/) or Microsoft
Silverlight (http://www.microsoft.com/silverlight/).
Based on this work, we analyze the limitations,
challenges and opportunities related to the web
browser and web applications more generally. We also
provide a number of recommendations for future
improvements.

The structure of this paper is as follows. In Section
2, we provide a historical summary of the evolution of
the Web, focusing especially on the ongoing transition
from web pages towards web applications. We also
provide an overview of the Sun Labs Lively Kernel – a
flexible web programming environment designed at
Sun Labs. In Section 3, we summarize our experiences
in using the web browser as an application platform,
taking a look at the various issues that we have
discovered. In Section 4, we provide suggestions for
future improvement. Section 5 concludes the paper.

1 An earlier version of this paper has been published as Sun Labs
Technical Report TR-2008-175, January 2008.

2. From Web Pages to Web Applications

Compared to how dramatically web usage has
increased since the 1990s, it is remarkable how little
the web browser has changed since it was introduced.
For instance, the common navigation features, such as
the “back”, “forward” and “reload” buttons of the
browser, were present already in the early versions of
Mosaic and Netscape Navigator. In contrast, the way
the Web is used has evolved constantly from the early
days. In the following, we provide a brief summary of
the evolution of web usage.

2.1. Evolution of Web Usage

The World Wide Web has undergone a number of
evolutionary phases. Initially, web pages were simple
textual documents with limited user interaction
capabilities based on hyperlinks. Soon, graphics
support and form-based data entry were added.
Gradually, with the introduction of DHTML [1] – the
combination of HTML, Cascading Style Sheets (CSS),
the JavaScript scripting language [2], and the
Document Object Model (DOM) – it became possible
to create interactive web pages with built-in support for
advanced graphics and animation. Numerous plug-in
components – such as Flash, RealPlayer and
Shockwave – were then introduced to make it possible
to build web pages with visually rich, interactive
multimedia content. At the high level, the evolution of
web pages has advanced from simple, “classic” web
pages with text and static images only to animated
multimedia pages with plug-ins to Rich Internet
Applications (RIA). Below we provide a summary of
the three main phases in the evolution of the Web.

In the first phase, web pages were truly pages, i.e.,
page-structured documents that contained primarily
text with some interspersed static images, without
animation or any interactive content. Navigation
between pages was based simply on hyperlinks, and a
new web page was loaded from the web server each
time the user clicked on a link. There was no need for
asynchronous network communication or any
advanced protocols between the browser and the web
server. Some pages were presented as forms, with
simple textual fields and the possibility to use basic
widgets such as buttons, radio buttons or pull-down
menus.

In the second phase, web pages became increasingly
interactive, with animated graphics and plug-in
components that allowed richer content to be
displayed. This phase coincided with the commercial
takeoff of the Web, when companies realized that they

could create commercially valuable web sites by
displaying advertisements or by selling merchandise or
services over the Web. Navigation was no longer based
solely on links, and communication between the
browser and the server became increasingly advanced.
The JavaScript scripting language, introduced in
Netscape Navigator version 2.0B in December 1995,
made it possible to build animated, interactive content
more easily. The use of plug-in components such as
Flash, Quicktime, RealPlayer and Shockwave spread
rapidly, allowing advanced animations, movie clips
and audio tracks to be inserted in web pages. In this
phase, the Web started moving in directions that were
unforeseen by its designers, with web sites behaving
more like multimedia presentations rather than
conventional pages. Content mashups2 and web site
cross-linking became increasingly popular.

Today, we are in the middle of another major
evolutionary step towards desktop-style web
applications, also known as Rich Internet Applications
or simply as web applications. The technologies
intended for the creation of such applications are also
often referred to collectively as “Web 2.0”
technologies. Fundamentally, Web 2.0 technologies
combine two important characteristics or features:
collaboration and interaction. By collaboration, we
refer to the “social” aspects that allow a vast number of
people to collaborate and share the same data,
applications and services over the Web. However, an
equally important, but publicly less noted aspect of
Web 2.0 technologies is interaction. Web 2.0
technologies make it possible to build web sites that
behave much like desktop applications, for example,
by allowing web pages to be updated one user interface
element at a time, rather than requiring the entire page
to be updated each time something changes. Web 2.0
systems often eschew link-based navigation and utilize
direct manipulation techniques familiar from desktop-
style applications instead. Furthermore, some systems
offer application development capabilities as built-in
features. For instance, the Facebook web site
(http://www.facebook.com/) has its own application
description language that can be used for creating web
applications for Facebook pages.

The three phases discussed above are not mutually
exclusive. Rather, web pages representing all three
phases coexist on the Web today. The majority of
commercial web pages today represent the second
phase. However, the trend towards web applications is
becoming increasingly common, with new web

2 In web terminology, a mashup is a web site that combines content
from more than one source (from multiple web sites) into an
integrated experience.

application development technologies and systems
being introduced frequently.

2.2. General Observations and Trends

In analyzing the web application development
technologies mentioned above, it quickly becomes
obvious that all these technologies are still rather
different from each other. However, there are some
common themes that have started to emerge.

Trend toward dynamic languages [3]. Most of the
systems above rely on dynamic, interpreted languages
at least at some level. In some systems, such as Ajax
(http://www.ajaxian.com/) or Ruby on Rails (RoR)
(http://www.rubyonrails.org/), applications are written
entirely in a dynamic language – JavaScript and Ruby,
respectively. Other systems, such as Google Web
Toolkit (GWT) (http://code.google.com/webtoolkit/),
rely on a dynamic language (JavaScript) for program
execution inside the web browser.

Technology mashups. Many current web systems
are hybrid solutions in the sense that they combine
various existing, sometimes previously unrelated
technologies. For instance, Ajax [4] is a combination
of a number of existing technologies – HTML, CSS,
DOM, JavaScript, asynchronous HTTP networking and
XML protocols – rather than a uniform, coherent
application platform. In this regard, these systems
resemble the content mashups that are common on the
Web today.

Dependence on tools. Most of the web systems are
heavily dependent on tools and integrated development
environments. For instance, Ruby on Rails introduces a
set of naming conventions that are automatically
applied by the development tools.

Another general observation about web application
development today is that they often violate well-
known software engineering principles. For instance,
the JavaScript language has very limited support for
modularity or information hiding. We have
summarized our observations in this area in more detail
in another paper [5].

2.3. Sun Labs Lively Kernel

At Sun Labs, we have developed a new web

programming environment called the Sun Labs Lively
Kernel. The Lively Kernel supports desktop-style
applications with rich graphics and direct manipulation
capabilities, but without the installation or upgrade

hassles that conventional desktop applications have.
The system and the applications written for it run in a
regular web browser without installation or plug-in
components. The system even includes development
tools that can be used inside the system itself.

The Lively Kernel is built around the following
three assumptions:

1. The World Wide Web is the new target platform.
2. The Web Browser is the new operating system.
3. JavaScript is the de facto programming language

 of the Web.

For the purposes of this paper, the Lively Kernel is

especially interesting because the system pushes the
limits of the web browser as an application platform
further than any other system. In addition to supporting
desktop-style applications that can run in a web
browser, the Lively Kernel can also function as an
integrated development environment (IDE), making
the whole system self-supporting and able to improve
and extend itself dynamically. Yet the entire system
requires nothing more for its execution than a web
browser. A screenshot of the system has been provided
in Figure 1.

A key difference between the Lively Kernel and
other systems in the same area is our focus on
uniformity. Our goal is to build a platform using a
minimum number of underlying technologies. This is
in contrast with many current web technologies that
utilize a diverse array of technologies such as HTML,
CSS, DOM, JavaScript, PHP, XML, and so on. In the
Lively Kernel we attempt to do as much as possible
using a single technology: JavaScript. We have chosen
JavaScript primarily because of its ubiquitous
availability in the web browsers today and because of
its syntactic similarity to other highly popular
languages such as C, C++ and Java. However, we also
want to leverage the dynamic aspects of JavaScript,
especially the ability to modify applications at runtime.
Such capabilities are an essential ingredient in building
a malleable web programming environment that allows
applications to be developed interactively and
collaboratively. In some ways, the system illustrates
that the entire computer desktop, including all the
commonly used tools and applications, can be moved
to the Web and run in a web browser as well.

From the technical viewpoint, the Lively Kernel
system consists of the following four components.

Figure 1. Sun Labs Lively Kernel running in the Safari web browser

1. The JavaScript programming language. We have

used the JavaScript programming language, a facility
available in all commercial web browsers today, as a
fundamental building block for the rest of the system.

2. Asynchronous HTTP networking. All the
networking operations in the Lively Kernel are
performed asynchronously using the XMLHttpRequest
feature familiar from Ajax. The use of asynchronous
networking is critical so that all the networking
requests can be performed in the background without
impairing the interactive response of the system.

3. Morphic user interface framework and widgets.
The Lively Kernel is built around a rich user interface
framework called Morphic [6]. The Morphic
framework consists of about 10,000 lines of
uncompressed JavaScript code that is downloaded to
the web browser when the Lively Kernel starts.

4. Built-in tools for developing, modifying and
deploying applications on the fly. The Morphic UI
framework includes tools – such as a class browser and
object inspector – that can be used for developing,
modifying and deploying applications from within the
Lively Kernel system itself. These features have been
implemented using the reflective capabilities of the
JavaScript programming language, and can therefore
be used inside the web browser without any external
tools or IDEs. Furthermore, it is possible to export
objects or entire web pages, so that applications written

inside the Lively Kernel can also be run as standalone
web pages.

Given these additional capabilities, and the fact that
the system can run in an ordinary web browser, the
Lively Kernel is an interesting research vehicle for
studying the capabilities of the web browser as an
application platform. The Lively Kernel also serves as
a testbed for studying the use of the JavaScript
language as a general-purpose programming language
[7]. Some of the work that we have done with
JavaScript could even be described as systems
programming. In general, the Lively Kernel proves that
there is a lot of latent, unleashed power in the web
browser; for instance, the true potential of JavaScript
as a dynamic, reflective programming language inside
the browser has not been fully utilized so far.

3. Experiences and Observations

In this section we provide a summary of our
experiences with the web browser as a host platform
for applications. We have categorized our experiences
and observations into usability and user interaction
issues, networking and security issues, interoperability
and compatibility issues, development and testing
issues, deployment issues, and performance issues.
Many of these issues have already been summarized in

an earlier paper, although from a slightly different
perspective [5].

3.1. General Observations and Trends

The browser I/O model is poorly suited to desktop-
style applications. In current web technologies a
scripting language and other external components
communicate with the web browser primarily via the
Document Object Model (DOM). DOM is effectively a
large tree data structure that allows external tools to
access the data that is displayed in the browser,
typically by reading and modifying the attributes that
represent the graphical objects on the screen. In
addition to tweaking the DOM tree, an external tool
such as a scripting language can construct HTML
pages as strings (containing HTML markup) on the fly
and then send those strings to the browser with the
expectation that the browser will update its screen
accordingly. This is cumbersome compared to
traditional systems in which programs can manipulate
the screen directly by using a graphics API that
supports direct drawing and direct manipulation.

The page-based display update model of the web
browser is also an impediment to application usability,
as it is dramatically less interactive than the direct
manipulation user interfaces that were in widespread
use in desktop computers already in the 1980s. With
Ajax and other Web 2.0 technologies supporting
asynchronous network communication, the page-based
update model is gradually being replaced with a finer-
grained interaction model, but it is still hard to
implement user interaction capabilities that would be
on a par with desktop applications.

The semantics of many browser features are
unsuitable for applications. The web browser has a
number of historical features that have poorly defined
semantics for applications. Consider the 'reload', 'stop',
'back' and 'forward' buttons, for instance. While such
navigational features make sense when viewing
documents and forms, these features have unclear
semantics for applications that have a complex internal
state and highly dynamic interaction with the web
server. For example, it is difficult to define meaningful
semantics for an online stock trading or a banking
application's response to the 'reload' or 'back' button
while processing a financial transaction. The presence
of such features can be outright dangerous if a web
application is used for controlling a medical system or
a nuclear plant. In addition to predefined browser
buttons, many of the predefined browser menu items –
especially those that are displayed when right-clicking
objects on the screen – are meaningless for
applications. Web applications should preferably be

able to override such features with application-specific
behavior.

3.2. Networking and Security Issues

The document-oriented history of the web browser
is apparent also when analyzing the restrictions and
limitations that web browsers have in the area of
networking and security. Many of these limitations
date back to conventions that were established early on
in the design of the browser. Furthermore, some of the
restrictions are “folklore” and have never been fully
documented or standardized.

The “Same Origin” networking policy is
problematic. A central security-related limitation in the
web browser is the “same origin policy” that was
introduced originally in Netscape Navigator version
2.0. The philosophy behind the same origin policy is
simple: it is not safe to trust content loaded from
arbitrary web sites. When a document containing a
script is downloaded from a certain web site, the script
is allowed to access resources only from the same web
site but not from other sites. In other words, the same
origin policy prevents a document or script loaded
from one web site ("origin") from getting or setting
properties of a document from a different origin. The
same origin policy has a number of implications for
web application developers. For instance, a web
application loaded from a web site cannot easily go and
access data from other sites. This makes it difficult to
build deploy web applications that combine content
from multiple web sites. Special proxy arrangements
are usually needed on the server side to allow
networking requests to be passed on to external sites.
Consequently, when deploying web applications, the
application developer must be closely affiliated with
the owner of the web server in order to make the
arrangements for accessing the necessary sites from the
application.

Only a limited number of simultaneous network
requests allowed. Early on in the history of the Web
another design convention was established that
prevents a web browser from creating too many
simultaneous HTTP requests. Such limitations were
introduced to prevent too much web traffic from being
created. Even today, most web browsers allow only a
limited number (e.g., two or four) of network requests
to be created simultaneously. With highly interactive
web applications that require a lot of data from several
sites asynchronously, such limitations can cause
problems, especially if some of the sites do not respond
to requests as quickly as expected.

No access to local resources or host platform
capabilities. Web documents and scripts are usually
run in a sandbox that places various restrictions on the

resources and host platform capabilities that the web
browser can access. For instance, access to local files
on the machine in which the web browser is being run
is not allowed, apart from reading and writing cookies.
The sandbox security limitations prevent a malicious
web site from altering the local files on the user's local
disk, or from uploading files from the user's machine to
another location. Unfortunately, the sandbox security
limitations of the web browser make it difficult to
build web applications that utilize local resources or
host platform capabilities. Consequently, it has been
nearly impossible to write web applications that would,
e.g., be usable also in offline mode without an active
network connection. These problems are gradually
being solved with libraries such as WebDAV (Web-
based Distributed Authoring and Versioning) [8] and
Google Gears (http://gears.google.com/).

A more fine-grained security model is missing. The
key point in all the limitations related to networking
and security is that there is a need for a more fine-
grained security model for web applications. On the
Web today, applications are second-class citizens that
are on the mercy of the classic, “one size fits all”
sandbox security model of the web browser. This
means that decisions about security are determined
primarily by the site (origin) from which the
application is loaded, and not by the specific needs of
the application itself. Even though some interesting
proposals have been made [9], currently there is no
commonly accepted finer-grained security model for
web applications or for the Web more generally.

3.3. Interoperability and Compatibility Issues

Incompatible browser implementations. A central
problem in web application development today is
browser incompatibility. Commercial web browsers
have incompatibilities in various areas. For instance,
the DOM implementations vary from one browser to
another. DOM attribute names can vary from browser
to browser; even seemingly trivial attributes such as
window width and height have different names in
different browsers. The JavaScript implementations
have known differences, e.g., in the area of how event
handlers can be triggered programmatically. The
graphics libraries supported by the browsers have also
been implemented differently. All these differences
make it difficult to implement cross-platform, cross-
browser web applications that would run identically on
all browsers.

Disregard for official standards. Some browser
vendors have a tendency to favor their own
technologies in lieu of official World Wide Web
Consortium (W3C) or ECMA standards. For instance,
the JavaScript graphics libraries in the Lively Kernel

depend on the W3C Scalable Vector Graphics (SVG)
(http://www.w3.org/TR/SVG/) standard. Unfortunately,
SVG support is not yet available in one of the
commercially most important web browsers.

Lack of standards for important areas such as
advanced networking, graphics or media. The Java
programming language has exceptionally rich class
libraries that have been standardized over the years
using the Java Community ProcessSM
(http://www.jcp.org/). In contrast, during the
development of the Lively Kernel we noticed that
JavaScript libraries available for web application
development are still surprisingly immature and
incomplete. No widely accepted standards exist for
areas such as advanced networking and graphics,
audio, video and other advanced media capabilities.
Although such libraries have been defined as part of
external JavaScript library development activities, such
as Dojo (http://www.dojotoolkit.org/), no officially
accepted W3C or ECMA standards for these areas
exist.

3.4. Development and Testing Issues

The power of the World Wide Web stems largely
from the absence of static bindings. When a web site
refers to another site or a resource such as a bitmap
image, or when a JavaScript program accesses a certain
function or DOM attribute, the references are resolved
at runtime without static checking. It is this dynamic
nature that enables the flexible combination of content
from multiple web sites and, more generally, allows
the Web to be “alive” and to evolve constantly with no
central planning or control. The dynamic nature of the
Web has various implications for application
development and testing.

Evolutionary, stepwise development style is needed.
For an application developer, the extreme dynamic
nature of the Web poses new challenges, causing some
fundamental changes in the development style.
Basically, the development style needs to be based on
stepwise refinement [10]. Such a style is closer to the
“exploratory” programming used in the context of
dynamic programming languages such as Smalltalk,
Self or Lisp, rather than the style used with more static,
widely used languages such as C, C++ or Java.

Completeness of applications is difficult to
determine. Web applications are generally so dynamic
that it is impossible to know statically, ahead of
application execution, if all the structures that the
program depends on will be available at runtime.
While web browsers are designed to be error-tolerant
and will ignore incomplete or missing elements, in
some cases the absence of elements can lead to fatal
problems that are impossible to detect before

execution. Furthermore, with scripting languages such
as JavaScript, the application can even modify itself on
the fly, and there is no way to detect the possible errors
resulting from such modifications ahead of execution.
Consequently, web applications require significantly
more testing (especially coverage testing) to make sure
that all the possible application behaviors and paths of
execution are tested comprehensively.

No support for static verification or static type
checking. In the absence of well-defined interfaces and
static type checking, the development style needed for
web application development is fundamentally
different from conventional software development.
Since there is no way to detect during the development
time whether all the necessary components are present
or have the expected functionality, applications have to
be written and tested piece by piece, rather than by
writing tens of thousands of lines of code ahead of the
first execution. Such piecemeal, stepwise development
style is similar to the style used with programming
languages that are specifically geared towards
exploratory programming.

Incremental testing is required. Due to its highly
permissive, error-tolerant nature, JavaScript
programming requires an incremental, evolutionary
approach to testing as well. Since errors are reported
much later than usual, by the time an error is reported
it is often surprisingly difficult to pinpoint the original
location of the error. Error detection is made harder by
the dynamic nature of JavaScript, for instance, by the
option to change some of the system features on the
fly. Furthermore, in the absence of strong, static
typing, it is possible to execute a program and only at
runtime realize that some parts of the program are
missing. For all these reasons, the best way to write
JavaScript programs is to proceed step by step, by
writing (and immediately testing) each new piece of
code. If such an incremental, evolutionary approach is
not used, debugging and testing can become quite
tedious even for relatively small JavaScript
applications.

Code coverage testing is important. The dynamic,
interactive nature of JavaScript makes testing
deceptively easy. In the presence of an interactive
command shell and the 'eval' function, each piece of
code can be run immediately after it has been written.
Unfortunately, the use of such immediate testing
approach does not guarantee the program to be bug-
free or complete. In a static programming language,
many simple errors will be caught already during the
compilation of the program. In contrast, in a dynamic
language, it is not possible to know statically if a piece
of code that has never been executed will actually run
without problems. As programs may contain numerous
rarely executed branches (for instance, exception

handlers) code coverage testing is very important. Still,
even with 100% code coverage, it is possible that
further problems will be found.

3.5. Deployment Issues

Anything that is made available on the World Wide
Web is instantly accessible by anybody using a web
browser. On the Web, there is no longer any need to do
“shrink-wrapped” software releases. Even more
importantly, the need for manual application
installation or upgrades will go away. Ideally, the user
will simply point the web browser to a site containing
an application, and the latest version of the application
will start running automatically. Release cycles will
become considerably shorter. All these changes will be
significant improvements compared to the traditional
way of deploying desktop software. There are issues
associated with such a deployment model, though, as
discussed below.

Applications are “always on”. With the instant
deployment model, applications are downloaded
directly from the Web. The applications are “always
on” in the sense that all the changes made to them will
be immediately visible to all users who subsequently
download the application. Since many of the users may
still be using an earlier version, any updates to the
application will have to be made carefully. For
instance, if the application's internal data formats on a
web server database change, backwards compatibility
must be taken into account, since there may still be
thousands of users who are using an older version of
the application.

Towards “nano-releases”. A software release is the
distribution of an initial or new and upgraded version
of a computer software product. Traditionally, new
software releases have occurred relatively infrequently,
perhaps a few times per year for a major software
product such as a word processor or spreadsheet
application, or a few times per month for some
business-critical applications in early stages of their
deployment cycle. The instant deployment model will
change all this, allowing new releases to be made much
more frequently. In the ultimate scenario, a new release
occurs each time changes are made to the system,
perhaps even several times a minute. The possibility of
such “nano-releases” has not been investigated much
so far, but is bound to have significant long-term
impacts in the software industry.

Perpetual beta syndrome. The transition towards
web applications will make releases deceptively
simple. When combined with the use of dynamic
languages that allow incomplete software to be run, it
becomes dramatically easier to release software in
early stages of its development. This will lead to

“perpetual beta syndrome”: many software
applications will never reach a point when they are
actually ready for prime-time use. Only those
applications and web sites that will become adequately
popular will ever reach maturity while others will stay
in beta form perpetually.

Fragmentation problems. The instant deployment
model is closely related to the compatibility issues
discussed earlier in Section 3.3. The instant
deployment, “zero-installation” model works smoothly
only as long as the target platform – in this case the
web browser – is identical for all the users. If different
browser versions or additional plug-in components are
required, application distribution becomes considerably
more challenging. From the application developer's
viewpoint, this results in fragmentation: the need to
build multiple versions of the same application for
different platform variants. Such fragmentation
problems are familiar from the mobile software
industry, in which there are hundreds or thousands of
different target devices (mobile phones), each with its
own characteristics and peculiarities.

3.6. Performance Issues

Until recently, performance problems associated
with web pages were more commonly associated with
network latency and other connectivity issues, rather
than with the performance of the web browser or the
web page itself. However, now that people have started
running real applications on the Web, performance
problems have become apparent.

Inadequate JavaScript performance. Current
JavaScript virtual machines are unnecessarily slow.
Even though JavaScript is a significantly more
dynamic language than, for instance, the Java
programming language, there is no fundamental reason
for JavaScript programs to run 10-100 times slower
than comparable Java applications. At the very
minimum, JavaScript virtual machine performance
should be comparable to optimized Smalltalk virtual
machine implementations, which is not yet the case.
Fortunately, a number of higher-performance
JavaScript virtual machines are on their way, including
Mozilla's new virtual machine Tamarin
(http://www.mozilla.org/projects/tamarin/).

Inadequate memory management capabilities.
Current JavaScript virtual machines have simple,
1970's style garbage collectors and memory
management algorithms that are poorly suited to large,
long-running applications. For instance, with large
applications that allocate tens of megabytes of
memory, garbage collection pauses in the Mozilla
SpiderMonkey JavaScript virtual machine (VM)
(http://www.mozilla.org/js/spidermonkey/) can be

excessively long, up to tens of seconds even on a fast
machine. As in the VM performance area, with modern
virtual machine implementation techniques memory
management behavior could be improved substantially.

Inadequate graphics library performance.
Application performance is typically a combination of
many factors. The performance of the underlying
execution engine, such as a JavaScript virtual machine,
is in itself insufficient to guarantee the optimal
performance of the application. Based on our
experience, a major performance bottleneck in today's
web browsers is graphics library performance.
Graphics engines, such as the engines available for
Scalable Vector Graphics (SVG), can be surprisingly
slow. For highly interactive environments such as the
Lively Kernel, this can have a significant negative
impact on performance.

Inefficient bindings between the browser and other
components. A great deal of the performance problems
in the web application area can be attributed to
inefficient communication between the browser and
various other components. For instance, when the
coordinates of a graphical object are passed from a
JavaScript application to the browser (DOM) and
ultimately to a native graphics library that draws the
object, it is common to convert the numeric parameters
into strings and then back to numbers again, possibly
several times during the process. Such conversions can
easily slow down graphics performance by an order of
magnitude. In general, a lot of room for optimization
remains in the area of native communication interfaces
between the web browser, JavaScript engine and
graphics libraries.

4. Solutions and Recommendations

Compared to how dramatically web usage has
increased since the early 1990s, it is remarkable how
little the web browser has changed since it was
originally introduced. In general, web browsers are
already so widely established that it may seem rather
difficult to try to make any significant changes in the
design or the behavior of the browser. However, given
how quickly the use of web applications is increasing,
it is quite possible that web browsers will have to adapt
to accommodate a more application-oriented approach,
in addition to the document-oriented approach that
dominates the Web today.

Solving the usability and user interaction issues.
The usability issues of the web browser seem relatively
easy to fix. Basically, in order to support applications
with direct manipulation and desktop-style user
interaction, the I/O model of the web browser needs to
be enhanced and complemented with capabilities
familiar from the world of desktop applications. The

problems in this area boil down to three basic issues:
(1) the cumbersome I/O model of the web browser, (2)
the presence of some browser features that are
semantically problematic in the context of real
applications, and (3) the absence of portable solutions
for important user interaction features such as
cut/copy/paste support. We have presented solutions to
these issues in our earlier paper [5].

Solving the networking and security issues. The
networking and security issues arise from the
combination of the current “one size fits all” browser
security model and the general document-oriented
nature of the web browser. Decisions about security are
determined primarily by the site (origin) from which
the web document is loaded, not by the specific needs
of the document or application. Such problems could
be alleviated by introducing a more fine-grained
security model, e.g., a model similar to the
comprehensive security model of the Java SE platform
[11] or the more lightweight, permission-based,
certificate-based security model introduced by the
MIDP 2.0 Specification for the Java™ Platform, Micro
Edition (Java ME) [12].

The biggest challenges in this area are related to
standardization, as it is difficult to define a security
solution that would be satisfactory to everybody while
retaining backwards compatibility. Also, any security
model that depends on application signing and/or
security certificates involves complicated business
issues, e.g., related to who has the authority to issue
security certificates. Therefore, it is likely that any
resolutions in this area will still take years. Meanwhile,
a large number of security groups and communities,
including the Open Web Application Security Project
(OWASP), the Web Application Security Consortium
(WASC), and the W3C Web Security Context
Working Group, are working on the problem.

Solving the interoperability and compatibility
issues. As in the security area, the issues in the browser
compatibility area are heavily dependent on
standardization. In order to improve compatibility, an
independently developed browser compatibility test
suite, similar to the test suites available for the Java
platform, would be very valuable. For each new
browser feature, a reference implementation should
also be made available. Having an independent third-
party compatibility test organization might also help. If
such an organization were available, new browser
versions could be subjected to third-party compatibility
testing before the new versions of the browser will be
released to the public.

In general, improved communication and
collaboration between the browser vendors are key to
any improvements in this area. Additional
standardization work is needed especially in the area of

JavaScript library specification, where APIs are still
missing from important areas such as advanced
networking and graphics, audio, video and other
advanced media capabilities.

Solving the development and testing issues. As we
discussed earlier, the transition from conventional
applications to web applications will result in a shift
away from static programming languages such as C,
C++ or C# towards dynamic programming languages
such as JavaScript, PHP or Python. Since mainstream
software developers are often unaware of the
fundamental development style differences between
static and dynamic programming languages, there is a
need for education in this area. Developers need to be
educated about the evolutionary, exploratory
programming style associated with dynamic languages,
as well as agile development methods and techniques
that are available for facilitating such development.

In the testing area, there is an increased need for
code coverage testing to ensure that all the parts of the
applications are tested appropriately in the absence of
static checking. Some of the problems can also be
solved by tool support. For instance, static verification
tools, such as jslint (http://www.jslint.com/), can be
valuable in checking the integrity of an application
before its actual execution.

Solving the deployment issues. One of the main
benefits of the Web is instant worldwide deployment:
Any artifact that is posted on the Web is immediately
accessible to anybody in the world who has a web
browser. This “instant gratification” dimension will
revolutionize the deployment and distribution of
software applications, and will imply various changes
in the business model of almost everyone in the
software industry.

One of the main challenges in the deployment area
is to define a model that addresses the fundamental
changes in the nature of applications that we discussed
above: applications that are always on, the ever-
shortening release cycles, and the perpetual beta
syndrome. Detailed discussion on this issue falls
beyond this paper, but we plan to focus on these topics
in more detail in another research paper.

Solving the performance issues. As already
mentioned, the JavaScript virtual machines, graphics
library implementations, and native function bindings
in today's web browsers are surprisingly slow. Now
that people have started running significant desktop-
style applications on the Web, these performance
problems are becoming increasingly apparent.
Fortunately, solutions in this area are relatively
straightforward. Techniques for high-performance
virtual machine implementation have been investigated
for decades. Plenty of existing expertise exists in this
area, both to support faster execution and more

efficient memory management. To improve graphics
performance and native function bindings, various
techniques are also available, including closer
integration with hardware-accelerated graphics
engines.

5. Conclusions

For better or worse, the World Wide Web is
increasingly the platform of choice for advanced
software applications. Web-based applications require
no installation or manual upgrades, and they can be
deployed instantly worldwide. The transition towards
web-based applications means that the web browser
will become the primary target platform for software
applications, displacing conventional operating
systems and specific computing architectures and
platforms from the central role that they used to have.
As a consequence, software developers will
increasingly write software for the Web rather than for
a specific operating system or hardware architecture.

Web-based applications will open up entirely new
possibilities for software development, and will ideally
combine the best of both worlds: the excellent usability
of conventional desktop applications and the enormous
worldwide deployment potential of the World Wide
Web. While the web browser is not an ideal platform
for desktop-style applications, the instant deployment
aspect makes web applications inherently superior to
conventional desktop-style applications. With our own
work on the Sun Labs Lively Kernel, we have
demonstrated that there is a better way to build
browser-based web applications that support rich user
interaction, advanced graphics, integrated development
and deployment, and online collaboration. We hope
that such features will become commonplace in web
application development in the near future.

6. References

[1] Goodman, D., Dynamic HTML: The Definitive Reference.
O'Reilly Media, 2006.

[2] Flanagan, D., JavaScript: The Definitive Guide, 5th
Edition. O'Reilly Media, 2006.

[3] Paulson, L.D., Developers shift to dynamic programming
languages, IEEE Computer, Vol 40, nr 2, February 2007, pp.
12-15.

[4] Crane, D., Pascarello, E, James, D., Ajax in Action.
Manning Publications, 2005.

[5] Mikkonen, T., Taivalsaari, A., Web Applications:
Spaghetti code for the 21st century. Technical Report TR-
2007-166, Sun Microsystems Laboratories, 2007.

[6] Maloney, J.H., Smith, R.B., Directness and Liveness in
the Morphic User Interface Construction Environment.
Proceedings of the 8th annual ACM Symposium on User
Interface and Software Technology (UIST), Pittsburgh,
Pennsylvania, 1995, pp. 21-28.

[7] Mikkonen, T., Taivalsaari, A., Using JavaScript as a Real
Programming Language. Technical Report TR-2007-168,
Sun Microsystems Laboratories, 2007.

[8] Dussealt, L., WebDAV: Next-Generation Collaborative
Web Authoring. Prentice-Hall Series in Computer
Networking and Security, 2003.

[9] Yoshihama, S., Uramoto, N., Makino, S., Ishida, A.,
Kawanaka, S., De Keukelaere, F., Security Model for the
Client-Side Web Application Environments. IBM Tokyo
Research Laboratory presentation, May 24, 2007.

[10] Wirth, N., Program development by stepwise
refinement. Communications of the ACM vol 14, nr 4 (Apr)
1971, pp. 221-227.

[11] Gong, L., Ellison, G., Dageforde, M., Inside Java™ 2
Platform Security: Architecture, API Design, and
Implementation, 2nd Edition. Addison-Wesley (Java Series),
2003.

[12] Riggs, R., Taivalsaari, A., Van Peursem, J.,
Huopaniemi, J., Patel, M., Uotila, A., Programming Wireless
Devices with the Java™ 2 Platform, Micro Edition (2nd
Edition). Addison-Wesley (Java Series), 2003.

