
Lively Wiki
A Development Environment for

Creating and Sharing Active Web Content

Robert Krahn
Hasso-Plattner-Institut,
University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3
Potsdam, Germany

robert.krahn@hpi.uni-
potsdam.de

Dan Ingalls
Sun Microsystems

Laboratories
16 Network Circle

Menlo Park
dan.ingalls@sun.com

Robert Hirschfeld
Hasso-Plattner-Institut,
University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3
Potsdam, Germany

robert.hirschfeld@hpi.uni-
potsdam.de

Jens Lincke
Hasso-Plattner-Institut,
University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3
Potsdam, Germany

jens.lincke@hpi.uni-
potsdam.de

Krzysztof Palacz
Sun Microsystems

Laboratories
16 Network Circle

Menlo Park
krzysztof.palacz@sun.com

ABSTRACT
Wikis are Web-based collaborative systems designed to help
people share information. Wikis have become popular due
to their openness which gives users complete control over the
organization and the content of wiki pages. Unfortunately
existing wiki engines restrict users to enter only passive con-
tent, such as text, graphics, and videos and do not allow
users to customize wiki pages. Thus, wikis cannot be used
to host or author rich dynamic and interactive content.
In this paper we present Lively Wiki, a development and
collaboration environment based on the Lively Kernel which
enables users to create rich and interactive Web pages and
applications – without leaving the Web. Lively Wiki com-
bines the wiki metaphor with a direct-manipulation user in-
terface and adds a concept for Web programming as well
as programming tool support to create an easy to use, scal-
able, and extendable Web authoring tool. Moreover, Lively
Wiki is self-supporting, i.e. the development tools were used
for creating its own implementation thereby giving users the
freedom to customize every aspect of the system.

Categories and Subject Descriptors
D.2.6 [Programming Environments]; D.2.2 [Design
Tools and Techniques]; D.3 [Programming Lan-
guages]; H.5.4 [Hypertext/Hypermedia]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’09, October 25-27, 2009, Orlando, Florida, U.S.A. .
Copyright c© 2009 ACM 978-1-60558-730-1/09/10 ...$10.00.

General Terms
Design, Human Factors

Keywords
Wikis, Application Wikis, Web Application, Morphic, User
Innovation, Development Environment, End-user Program-
ming

1. INTRODUCTION
During the last decade the Internet and especially the

World Wide Web have become more and more a platform
for applications which are replacing traditional desktop soft-
ware. This paradigm shift towards Web-based software
seems to continue [36, 34] and there are good reasons. Soft-
ware in the Web is platform independent, it can be accessed
from all over the world, upgrades can be done immediately
and centrally without affecting users, usually no installation
is necessary to run it, and users can interact and collabo-
rate. However, using the Web as an application platform
also has several drawbacks. The static publishing model of
server-hosted hypertext and the strict client/server architec-
ture make creating applications for the Web different from
and often more complicated than creating applications for
desktop environments [36].

In detail this means that developers have to integrate sev-
eral different technologies at once [12, 39]: (X)HTML, XML,
Cascading Style Sheets, JavaScript and the Document Ob-
ject Model (DOM) interface, PHP, ASP, Java or another
programming language for server side programming. Addi-
tionally there is the inherent multi-tier architecture which
forces a conceptual separation into a presentation layer and
domain/backup layer (server), resulting in complex soft-
ware architectures using the Model-View-Controller [11] or
Model-View-Presenter [10] design pattern even for simple
applications.

These technical obstacles make it hard to create inter-
active, rich, and lightweight applications. In comparison,
non Web-based development and authoring environments
like HyperCard [3, 15] and Smalltalk programming environ-
ments [13], especially Squeak [19], make it easy to create
these kind of applications due to their graphical and flexi-
ble UIs, uncomplicated programming interfaces, and direct
development models.

With Lively Wiki we want to combine the advantages
of the Web with the development capabilities of the men-
tioned authoring systems to create a general purpose Web
programming environment that allows the creation of inter-
active and dynamic applications. To allow openness, incre-
mental changes, and collaboration we combined wiki prin-
ciples [8] with a Web development model and programming
tools. To implement our system we extended the Lively Ker-
nel, a Web framework providing a convenient abstraction of
different Web technologies [20].

Figure 1: Active wikis enable new usage scenarios

Additionally to reported use cases for End-user Web de-
velopment [31, 4] we can imagine several other examples for
using programming capabilities in the Web. Figure 1 shows
a summary of use case categories. Content whose main pur-
pose it is to convey knowledge can be made more informative
and more vivid by combining interactive and multimedia el-
ements. Wikipedia articles could have user created inter-
active examples attached making certain topics more com-
prehensible. Articles would not just have a static form but
combine text with non-linear complex systems into Active
Essays as described by Kay [21, 44]. Project teams could
rapidly design and implement their own tools for supporting
their workflow, for example a collaborative calendar as pre-
sented in section 5. Applications could gather information
from different sources and create information compendiums
and mashups. An accessible and interactive environment
allows also to quickly create prototypes and try out UI de-
signs. Of course those applications could be individually
combined.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a short overview of the state of the art of pro-
gramming in the Web. Section 3 describes the concepts and
ideas behind Lively Wiki. Section 4 discusses the implemen-
tation of our system. Section 5 presents applications that
were developed in the wiki. Section 6 discusses the related
work and section 7 summarizes the work and gives an out-
look.

2. CLIENT SIDE AUTHORING AND
PROGRAMMING IN THE WEB

Web programming is usually done on the Web server
side using technologies like the Common Gateway Interface
(CGI), Web server extensions with modules, or Web frame-
works that integrate the different Web technologies [39]. To
create or change these applications, server access and knowl-
edge about the different Web technologies is required. Al-
though Web browsers support dynamic scripting since the
introduction of JavaScript these capabilities were seldom
used to enable users to influence the behavior of Web pro-
grams. Client side Web development is emerging as a new
field of software engineering empowering users to create ap-
plications by using nothing else than a Web browser [35].
The purpose of these programming systems is mainly to
create situational applications [33] which allow users to au-
tomate tasks or integrate data. We found several different
types of implementations:

• Bookmarklets are bookmarks that execute a
JavaScript expression [30]

• Programming systems implemented as Web browser
extensions [6] allow to define and execute actions on
DOM elements

• Mashups dynamically combine content from more than
one Web site [34]

• Application Wikis combine wiki markup with scripting
languages

• Active Web Essays [44] bring the authoring of Active
Essays [21] to the Web

These tools bring development capabilities to end-users,
however, they are mostly domain specific and do not allow
general purpose programming. It was argued that end-users
need robust and constrained environments in order to cre-
ate productive results [4]. We agree with that statement,
however, we do not believe that a platform used to create
end-user programming tools should be constrained per se.
We therefore base our work on the Lively Kernel.

The Lively Kernel is a client side platform for
Web application development running in modern Web
browsers without installation and is implemented entirely
in JavaScript [20, 35]. The goal of the Lively Kernel project
is to create a framework in which application development
should not be ”more complicated, less general, or any less
fun than other modes of programming” [20]. The Lively
Kernel implements the composable graphics system Mor-
phic [26] which can be used to display and animate objects
and process user inputs. The current version uses SVG and
canvas as underlaying graphic libraries, however, it provides
a complete abstraction from the interfaces of those systems
and users interact with the Morphic interface. Lively Ker-
nel’s interface also has support for networking (abstracting
XMLHttpRequest), provides an object system, and has sev-
eral other programming conveniences.

Although the Lively Kernel provides tools for browsing
and editing source code those tools proved to be tedious to
handle, were not able to show the source code for all parts of
the system, and, most important, were not sufficient for gen-
eral development purposes, especially not for programming
in a wiki.

Figure 2: Lively Wiki start world

3. LIVELY WIKI: CREATING AND
SHARING ACTIVE CONTENT

Lively Wiki is a development and collaboration environ-
ment based on the Lively Kernel that enables users to create
rich and interactive Web pages and applications. It com-
bines the wiki metaphor with a direct-manipulation user in-
terface to create an easy to use, scalable, and extendable
Web authoring tool.

3.1 Wiki Structure and Principles
The primary unit for structuring content in Lively Wiki is

a world. Worlds are web pages that are identified by a URL
and can be loaded with a Web browser. Doing this, the world
content is loaded and the Lively Wiki system is started. A
user can than interact with and change the contents of that
world. Worlds can include links to other worlds. Creating
new worlds can be done by clicking on a link to a not existing
world or by saving an existing world with a different name.
In both cases the new world is a clone of the old one.

Lively Wiki follows the wiki design principles [8]. Lively
Wiki is a open system, allowing users to change worlds as
they see fit1. It allows incremental changes by not requiring
referenced worlds to be existing yet and by allowing users
to define world content and behavior gradually. This en-
ables Lively Wiki to support growth and content evolution,
it hence has an organic structure2. The universal princi-
ple applies because the mechanisms of organizing the world
structure and editing text content are the same, as are the
mechanisms for changing page behavior and the overall wiki
behavior. Furthermore, Lively Wiki is tolerant to errors as

1The current prototype allows write access only for regis-
tered users, however, requiring an user account for modify-
ing the content can be made optional.
2See section 5 for a visualization of the world structure and
its changes.

non-affected behavior will continue to work when errors in
other parts exist. When errors occur in basic system parts
Lively Wiki allows users to revert a world to an older work-
ing version.

3.2 User interface
Lively Wiki’s goal is to make the user-system interaction

easy and straightforward. Instead of having editing modes
and markup languages for modifying wiki worlds we prefer
a direct, more desktop-like user interaction. We use Lively
Kernel’s Morphic implementation. Morphic is a user inter-
face construction environment [27, 26]. Its two main prin-
ciples are directness and liveness. Directness means that
there is no intermediate representation or mode when ma-
nipulating objects. Liveness means that screen objects are
interactive and active, i.e. they react to user input and can
have a custom behavior. These principles allow the itera-
tive creation of graphical interfaces in direct manner. This
means that screen objects (Morphs) can be manipulated di-
rectly with a pointing device. To edit text, for example, a
user clicks into a text morph and starts editing. Via the con-
text menu or with shortcuts text attributes can be changed.
Of course editing capabilities for morphs can also be turned
off individually.

In the same way other morphs can be modified and cre-
ated. Users are able to layout and compose complex worlds
by clicking and dragging objects. No predefined style limits
world layouts (although such layout policies can be individu-
ally defined, however, currently Lively Wiki has only simple
flow layouts). There exist several predefined morph types,
the most important are: Rectangle, ellipse, text, image, and
video morphs.

Figure 3 shows an example for a user defined world and
applications: The Todo-application in the foreground was
composed out of other morphs. Users can create new entries
by copying old entries and changing their labels.

Figure 3: A Lively Wiki world showing user created applications1

3.3 Programming with Lively Wiki
When creating the programming capabilities for Lively

Wiki we had two goals: To not restrict the expressiveness
and the programming potential and at the same time make
programing in the wiki not harder than editing other con-
tent of wiki pages. The Lively Kernel already had tools
for browsing and editing source code built into it. However
those tools proved to be tedious to handle, were not able to
show the source code for all parts of the system, and, most
important, were not sufficient for general development pur-
poses, especially not for programming in a wiki. In a wiki,
changes should not affect the entire system but should be
applied to local worlds only. Therefore, we created a de-
velopment model and tools which specifically support wiki
programming.

3.3.1 Programming Model and Process
In addition to editing the static content of worlds, Lively

Wiki users can also define the behavior of objects in those
worlds. We do not restrict the programmability of the wiki
to certain use cases like creating mashups; users can change
the system in a general and not predefined manner. Because
the wiki is completely implemented in itself there are no
restrictions and literally every aspect of the system can be
changed.

When a world without changes is loaded, the behavior
of objects is defined by the base system of Lively Wiki.
Changes can then be done incrementally to the base sys-
tem but apply only locally. Instead of saving those changes
to the Lively Wiki source code files, they are attached to a
ChangeSet of the world. The ChangeSet is reinvoked every
time the world is loaded. Figure 4 shows a model of three
worlds. Every world has a ChangeSet attached. Cloned

1The author is Philip Weaver

Figure 4: Software development scheme in a wiki

worlds like world2 inherit the changes from the world they
are created from. Wiki users can only manipulate worlds.
Wiki developers, however, can also change the base system.
Accordingly, they can also manually merge changes from
worlds back into the base system.

The world model allows users to make changes iteratively
and publish them instantly. It is possible to collaborate
asynchronously when programming in the same world (sec-
tion 4.2 for details). A wiki world in this sense is an envi-
ronment that has all the necessary development tools and is,
at the same time, the platform for running the applications.
This has a lot of advantages. Changes can be immediate,
there are no compile-run cycles. This helps to discover and

correct errors and makes the development process faster and
more dynamic. Moreover, there is no deployment process,
because the application is always running in the world where
it is developed. Of course, worlds can be cloned to make ”re-
leases”of applications. The tooling required for development
is already built into the wiki, so users do not need to install
and learn additional tools.

In a programming environment where everything can be
modified the danger exists that users break functionality.
However, this is not a serious problem because changes apply
only to a local world and can be reverted.

3.3.2 Programming Tools
Most of the programming tasks like defining a new class

could be done from a simple text morph (source code can
be evaluated from everywhere) but this is cumbersome and
changes would also not persist. Therefore Lively Wiki’s
development environment extends the Lively Kernel tool-
ing with a system browser for viewing and manipulating all
source code, a debugger-like stack viewer (using Lively Ker-
nels shadow stack feature [20]), and a test framework.

System Browser.
The main development tool for wiki programmers is the

SystemBrowser. The browser parses the source code of
Lively Wiki, extracts semantic information, and then dis-
plays it in the browser. This allows users to deal directly
with classes, methods, and functions, thereby making code
reading and writing much easier as well as forcing pro-
grammers to write clean and structured code [14]. The
three-structured display allows navigating and visualizing
the structure of code similar to the original Smalltalk-80
class browser [13]. However, the SystemBrowser is adapted
to the requirements of Web programming with JavaScript.
Code changes are evaluated at runtime and affect the world
behavior instantly.

The browser is written in a general way based on the Om-
niBrowser architecture [5] and thus can be extended to dis-
play not only the source code of files but also any other tree
structured information. Currently the browser is able to
display source code of plain JavaScript files, Lively Kernel’s
lkml definitions, and OMeta grammars [41].

The upper half of the SystemBrowser as shown in Figure
5 is divided in three panes, the left one showing class cate-
gories (these are files and the ChangeSet), the middle pane
displays classes, functions, or objects, and the right pane
shows methods or functions. The buttons in the middle
allow users to enable/disable context independent function-
ality. For example the file line numbers can be displayed
or the list items sorted. Context-dependent functionality
can be found in context menus. When invoking the context
menu of a method, for example, options to browse the imple-
mentors and senders of that method, to remove or to clone
the method are displayed. The browser also supports a lot
of programming conveniences like bracket matching, in-line
evaluation, and allows to search and browse the code base.

Stack Viewer.
The Stack viewer (see figure 6) can be invoked when plac-

ing a halt() call in the source code. When the control-flow
reaches the spot the viewer showing the current call stack
is opened. The source code of methods or functions can
then be browsed. In-line evaluation is enabled so users can

Figure 5: The SystemBrowser browsing its own im-
plementation

examine parameters. The control-flow, however, cannot be
continued or stepped through like in a debugger due to the
missing reflective features of JavaScript.

Figure 6: The StackViewer displays the method
stack at user defined points

Additional Tools.
Lively Wiki provides a xUnit-like test framework for cre-

ating and running tests. An additional local code browser
shows just the current changes of the world, so users don’t
have to deal with the rest of the code base. Additionally the
support for profiling programs shows how often methods or
functions where called and how much time was spent.

3.4 Wiki Control
To control the wiki-related properties users can open a

tool called WikiNavigator by moving the mouse in the upper
left corner of a world. With a WikiNavigator (see figure 7)
users can register an account and login with their username,
save and lock/unlock a world, and load versions of a world.
The WikiNavigator also shows if a world is currently locked
by another user.

Figure 7: The WikiNavigator

The explicit locking mechanism ensures that other users
do not overwrite a world that is currently worked on. How-
ever, it is not mandatory to lock a world in order to edit
it. This makes it possible that conflicts can appear: User
A opens a world after user B has opened the same world.
When A saves the world then B does not work on the most
recent version of the world anymore. If B wants to save
the page, all changes of A would be lost accidently. To pre-
vent this scenario the WikiNavigator informs B that a more
recent version of the world exists.

4. IMPLEMENTATION OF LIVELY WIKI
Lively Wiki extends the Lively Kernel in various ways.

It implements a complete programming environment that
allows to develop the wiki and the Lively Kernel from inside
itself. Lively Wiki also interfaces WebDAV and Subversion
to allow saving and versioning worlds. Using WebDAV to
the full extent has also the advantage of being able to inspect
and analyze wiki contents.

4.1 WebDAV and SVN Interface
The Lively Kernel is an almost completely client-based

system. The user starts it by navigating to a world (cur-
rently a xhtml page) which will download and run the
JavaScript source code and boot the system. From that mo-
ment all the application logic is gathered in the Web browser
environment (of course requests to the server can be made
using asynchronous JavaScript).

Figure 8: Lively Wiki architecture

Figure 8 shows the system parts and their functions. We
extended the system by connecting a Subversion repository
on the server side in which worlds can be stored in a seri-
alized form (Apache server version 2.2 in combination with
the dav svn module is used). We are using XHTML docu-
ments and append the world state as a SVG subtree. Using
Subversion has the advantage that worlds are automatically

versioned and meta data like author and and last modified
date can be retrieved. To use those features from a Web
browser we are using the WebDAV and DeltaV protocols.
WebDAV is a extension of the HTTP protocol to support
distributed authoring and versioning in the Web [1, 32] and
DeltaV is an extension of WebDAV for advanced version-
ing features [37]. In detail, Lively Wiki uses the following
HTTP/WebDAV/DeltaV methods:

• PUT. Upload the serialized contents to the server and
create a new document or a new version of an existing
document. It is used with the IF-Header to ensure
that newer versions of a world are not overridden by
accident.

• DELETE. For removing worlds from the repository.

• PROPFIND. Retrieve meta data from a version of a
world, it is used to find out which is the most recent
version of a world, who is the author, and what is the
modification date. In combination with LOCK and
UNLOCK it is also used to test if a world was locked.

• REPORT. Retrieve meta data from a collection of
worlds. PROPFIND requests can only retrieve meta
data from one resource and one version of that resource
at a time. To find out about the version history of a
world would require to issue several PROPFIND re-
quests. The REPORT method allows to combine them
into one request.

• LOCK and UNLOCK. Temporarily disable write ac-
cess to a world to avoid editing conflicts. User can
force the wiki to ignore locks.

To implement authorization and authentication Lively
Wiki uses Apache’s basic access control scheme. Currently
normal wiki users can only modify worlds (XHTML docu-
ments), not JavaScript or other resources.

4.2 Tools
The development and wiki tools are all implemented us-

ing Morphic and Lively Kernel’s observer model. The usual
architecture for a tool is the following: A widget used to de-
fine the user interface and connect it with domain objects.
Morphs are assembled in a buildView method and they are
linked to the widget or to arbitrary domain objects. This
allows to specify data flow conveniently without having to
write unnecessary glue code and, at the same time, leaves
domain objects independent from user interface definition.

The SystemBrowser uses OMeta [41] to parse JavaScript
sources. This allows to organize definitions of JavaScript ob-
jects semantically, thereby allowing operations like searches
for senders/implementors of methods or references of a class
as well as simple refactorings such as the Move Method refac-
toring [9]. The SystemBrowser itself is implemented using
a OmniBrowser-like architecture [5], this allows to keep the

browser, its content, and supported operations extendable.
Currently the browser is able to display source code of plain
JavaScript files, Lively Kernels lkml definitions, and OMeta
grammars.

5. APPLICATION EXAMPLES
To illustrate what can be done with Lively Wiki we will

describe two applications build entirely in our system.

5.1 Calendar
As mentioned in the introduction a rapid application de-

velopment platform would be convenient for several scenar-
ios. For example it could be useful for a project to have a
custom made calender application fulfilling certain require-
ments that are not provided by existing calendar applica-
tions. The finished application is shown in Figure 9: One
wiki world represents one month and each day of the month
is a rectangular shaped morph with a date attached to it.
Users of the calendar can drag and drop notes into day
morphs. The morph representing the current date is high-
lighted as well those day morphs that have notes attached to
it and are in the period of the next seven days after the cur-
rent date. In the following we present the steps for building
this simple calendar in the wiki.

Figure 9: Wiki calendar application

To get started a new world has to be created. We do this
by visiting an existing world (like the simpleObjects world3),
open the world menu by right clicking into the background,
and choosing ’publish as...’. In the new world we open a
SystemBrowser for the local changes (the ChangeSet) of the
world by open the World menu and choosing ’Tools...’ and
’Local code browser’. Since the simpleObjects world had no
changes attached the browser will show no items.

The calendar application has two types of objects: a
morph representing a date and an object that creates the day
morphs of month and arranges them properly on a screen.
Using the context menu of the code browser we create a
new class DayMorph inheriting BoxMorph. At this point it
should be mentioned that changes have an immediate effect
and can be tried out at once. For creating a DayMorph we
evaluate new DayMorph(new Rectangle(0,0,100,100)).

openInWorld() and a black rectangle appears in the upper
left corner of the world. To customize the look and the

3\url{http://livelykernel.sunlabs.com/repository/
lively-wiki/simpleObjects.xhtml}

behavior of the DayMorph we add a field named style to
the morph. This defines declaratively the appearance of the
morph and overwrite its constructor method so that a date
object can be passed to a DayMorph upon creation:

s t y l e : {
borderColor : Color . red ,
s t rokeOpac i ty : 0 ,
f i l l : Color . l i ghtGray

} ,
i n i t i a l i z e : function ($super , date , optPos) {

$super (optPos . extent (this . i n i t i a l E x t e n t)) ;
var l a b e l = new TextMorph (this . bounds () ,

date . t oS t r i ng) . beLabel () ;
this . addMorphFront (l a b e l) ;

}

This source code can be written inside the bottom pane of
the browser when the DayMorph class is selected. Accepting
those changes with alt+s will save and evaluate them. In the
same way we are overwriting the addMorph method to scale
down text when it is dropped into a DayMorph:

addMorph : function ($super , morph) {
$super (morph) ;
this . o l dSca l e = morph . g e tSca l e () ;
var s ca l ePt = this . getExtent () . scaleByPt (

morph . getExtent () . i nve r t ed ()) ;
var s c a l eFac to r = Math . min (s ca l ePt . x ,

s ca l ePt . y) ;
i f (s c a l eFac to r < 1) morph . s e t S c a l e (

s c a l eFac to r) ;
morph . centerAt (this . getCenter ()) ;
return morph ;

} ,

Everything thats missing now is to overwrite the on-

MouseDown method to restore the scale (using the oldScale
value) and a method that regularly checks the date of a
morph against the current date and modifies the style.
Morphs can register recurring actions in the system sched-
uler, this will call the specified method in intervals. Ad-
ditionally a simple layouter is needed for creating Day-
Morphs with dates. For space reasons we won’t present the
rest of the source code here but refer the interested reader
to \url{http://livelykernel.sunlabs.com/repository/

lively-wiki/livelyCalendar.}

xhtml. Such a small but powerful application requires lit-
tle code (the full example has around 70 LOC) and wiki
programmers have to know nothing more than the Morphic
interface.

5.2 Wiki Visualization
Having several entry points to worlds in a wiki can be

useful [23]. We therefore created another application in the
wiki that shows a live view of all wiki worlds, their links, and
meta information. Figure 10 shows the graph: Each node
represents a world, the size of the world indicates how much
versions a world has and the color of a node is a indicator of
how recent the last change was. Red nodes represent worlds
modified just now, white nodes represent worlds that were
not modified during the last 60 days.

The visualization uses a relaxation technique to ar-
range the nodes and is updated every few seconds
to give a spectator not only a live but a lively
view of the wiki. The visualization world can be
found at http://livelykernel.sunlabs.com/repository/

lively-wiki/livelyWikiVis.xhtml.

Figure 10: Wiki application that shows a live view of the existing wiki worlds, their links, and meta information

6. RELATED WORK
As described in section 2 Lively Wiki uses a client side

Web development approach that is related to the following
concepts and implementations.

6.1 Wikis
Wikis [23, 7] are one of the oldest of the Web application

types that allow users to change Web content. Wikis are
used for collaboration and information sharing. Wikis have
an extensible set of pages whose content and organization
can be changed by users [23]. Since their invention 1995
wikis have become popular [25, 40] and are used in corpo-
rate, academic, and personal contexts [38]. Usually the page
content of a wiki page is hypertext with embedded pictures
and attachements. The page can be edited with a markup
language, but the page layout cannot be changed other than
in a predefined manner. Typical wikis have no programming
functionality to define dynamic behavior.

6.2 Application Wikis
Application Wikis [4, 33] extend normal wikis with

lightweight programming features for the creation of ad-hoc
dynamic content. As situational applications they solve an
immediate, specific problem: for example they are used to
integrate database access and business processes [33, 17, 2].
Their target group are domain experts who are often not
professional programmers. As such they make programming
tasks straightforward by embedding a scripting language to
specify dynamic actions and behavior into the wiki markup

language or providing visual programming capabilities [17].
This approach, however, is restricting because language con-
structs are often domain specific (like in [4]) and users are
bound to the form of writing code in or inside markup lan-
guages without being able to interact and inspect objects.
Lively Wiki gives users a simpler and more immediate feed-
back while programming and users can create general pur-
pose applications.

6.3 Mashups
Mashups are applications that dynamically combine con-

tent from Web sites into something new [34]. There are a
number of Web-based mashup creation tools. They allow
end-users to program using textual- and visual languages,
e.g. Yahoo Pipes [43], Microsoft Popfly [28], or Google
Mashup Editor [16]. For a thorough review of Web-based
mashup creation tools see [34]. All mashup development
tools seem to be domain specific and do not allow to de-
velop general purpose applications.

6.4 Active Web Essays
Active Web Essays such as Chalkboard [44] are based

on the Active Essay concept [21]. They are educational
tools where complex mathematical and scientific ideas are
explained with modifiable dynamic simulations. Similar to
Literate Programming [22] scripts define the behavior of the
simulations, are at the same time part of the text, and can
be changed by the user. Current Active Web Essays lack the
directness of Lively Wiki and dedicated development tools.

7. SUMMARY AND OUTLOOK
We have designed and implemented Lively Wiki, a Web-

based development platform supporting the collaborative
creation of interactive and dynamic Web content. Instead
of having to integrate lots of diverse technologies to create
Web applications, Lively Wiki users can work with simple
a interface in a live environment. Lively Wiki follows wiki
principles to make application development as simple as pos-
sible.

We started to integrate visual data-flow programming
tools [24] into the wiki for simplifying application develop-
ment. We plan to extend those capabilities with other visual
programming approaches like Tile Scripting [42] and alter-
native programming language that are easier to use than
JavaScript.

Currently Lively Wiki supports only asynchronous collab-
oration. Implementing a synchronous collaboration model
like Nebraska [18] or Kansas [29] would support interac-
tion between developers. We also believe that collaboration
could be greatly enhanced by providing automatic merging
capabilities to worlds. When merging worlds, not only at-
tached source code would be considered but also the scene
graph so that morphs and the state of the world could be
moved from one version to another.

Lively Wiki search capabilities are currently only imple-
mented for the source code in a world (including the code
base). As we found out in the wiki visualization experiment
searching other worlds is straightforward and relatively fast
by using XPath and Regular Expressions. We plan to extend
the search function so that not only a normal text search in
the whole wiki is possible but that also the local code of
other worlds is searchable and can be browsed using the
SystemBrowser.

8. ACKNOWLEDGEMENTS
We would like to thank Philip Weaver and Peter Fraser

for their ongoing effort of testing Lively Wiki and for creat-
ing interesting applications. We would also like to express
thanks for the constructive discussions which we had with
Michael Perscheid, Michael Haupt, Malte Appeltauer, and
Bastian Steinert.

9. REFERENCES
[1] RFC 4818 WebDAV Specification.

http://www.webdav.org/specs/rfc4918.html, 2007.
As of Feb 10 2009.

[2] XWiki. http://www.xwiki.com/, 2008. As of Mar 12
2009.

[3] Hypercard.
http://en.wikipedia.org/wiki/Hypercard, January
2009. As of Jan 29 2009.

[4] Craig Anslow and Dirk Riehle. Towards End-User
Programming with Wikis. In WEUSE ’08: Proceedings
of the 4th international workshop on End-user
software engineering, pages 61–65, New York, NY,
USA, 2008. ACM.

[5] Alexandre Bergel, Stephane Ducasse, Colin Putney,
and Roel Wuyts. Meta-driven browsers. pages
134–156. Springer, 2007.

[6] Michael Bolin, Matthew Webber, Philip Rha, Tom
Wilson, and Robert C. Miller. Automation and
customization of rendered web pages. In UIST ’05:

Proceedings of the 18th annual ACM symposium on
User interface software and technology, pages 163–172,
New York, NY, USA, 2005. ACM.

[7] Ward Cunningham. WikiWikiWeb.
http://c2.com/cgi/wiki, March 1995. As of Jan 28
2009.

[8] Ward Cunningham. Design Principles of Wiki: How
can so little do so much?, 2006. Keynote at WikiSym
2006, http://c2.com/doc/wikisym/WikiSym2006.pdf.

[9] Martin Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Longman, Amsterdam,
1999.

[10] Martin Fowler. GUI-Architectures.
http://martinfowler.com/eaaDev/uiArchs.html,
2008. As of May 31 2008.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[12] Athula Ginige and San Murugesan. Web engineering:
an introduction. Multimedia, IEEE, 8(1):14–18,
Jan-Mar 2001.

[13] Adele Goldberg. SMALLTALK-80: the interactive
programming environment. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1984.

[14] Adele Goldberg. Programmer as reader. IEEE Softw.,
4(5):62–70, 1987.

[15] D. Goodman. The complete Hypercard handbook.
Bantam Books, Inc., New York, NY, USA, 1988.

[16] Google. Google Mashup Editor.
http://editor.googlemashups.com/, 2008. As of Feb
10 2009.

[17] IBM. IBM Mashup Center. http:
//www-01.ibm.com/software/info/mashup-center/,
2008. As of Apr 02 2009.

[18] Dan Ingalls. Nebraska.
http://wiki.squeak.org/squeak/1356. As of Mar 16
2009.

[19] Dan Ingalls, Ted Kaehler, John H. Maloney, Scott
Wallace, and Alan Kay. Back to the Future: The
Story of Squeak, a Practical Smalltalk Written in
Itself. ACM SIGPLAN Notices, 32(10):318–326, 1997.

[20] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler,
Antero Taivalsaari, and Tommi Mikkonen. The Lively
Kernel A Self-supporting System on a Web Page. In
Robert Hirschfeld and Kim Rose, editors, S3, volume
5146 of Lecture Notes in Computer Science, pages
31–50. Springer, 2008.

[21] Alan Kay. Active essays.
http://web.archive.org/web/20060710213801/

http://www.squeakland.org/whatis/a_essays.html,
2006. As of Mar 3 2009.

[22] Donald E. Knuth. Literate programming. Comput. J.,
27(2):97–111, 1984.

[23] Bo Leuf and Ward Cunningham. The Wiki way: quick
collaboration on the Web. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[24] Jens Lincke, Robert Krahn, Dan Ingalls, and Robert
Hirschfeld. Lively Fabrik - A Web-based End-user
Programming Environment. In In Proceedings of the

Conference on Creating, Connecting and Collaborating
through Computing (C5). IEEE, January 2009.

[25] Panagiotis Louridas. Using wikis in software
development. IEEE Software, 23(2):88–91, 2006.

[26] John H. Maloney. Morphic: The Self User Interface
Framework. Sun Microsystems, Inc., 1995.

[27] John H. Maloney and Randall B. Smith. Directness
and Liveness in the Morphic User Interface
Construction Environment. In UIST ’95: Proceedings
of the 8th annual ACM symposium on User interface
and software technology, pages 21–28, New York, NY,
USA, 1995. ACM.

[28] Microsoft. Popfly. http://www.popfly.com, 2008. As
of Sep 23 2008.

[29] Sun Microsystems. The Kansas Project.
http://research.sun.com/ics/kansas.html. As of
Mar 16 2009.

[30] Robert C. Miller. End User Programming for Web
Users. Workshop on End User Devlopment, 2003.

[31] Yoshiki Ohshima, Takashi Yamamiya, Scott Wallace,
and Andreas Raab. Tinlizzie wysiwiki and wikiphone:
Alternative approaches to asynchronous and
synchronous collaboration on the web. Technical
report, Viewpoints Research Instititute, 2007.

[32] Mary Ellen O’Shields and Philip J. Lunsford II.
WebDAV: A Web-Writing Protocol and More. Journal
of Industrial Technology, 20(2).

[33] Dirk Riehle. End-User Programming with Application
Wikis: A Panel with Ludovic Dubost, Stewart
Nickolas, and Peter Thoeny. In Proceedings of the 2008
International Symposium on Wikis (WikiSym ‘08).
ACM Press, 2008. Pre-conference panel summary.

[34] Antero Taivalsaari. Mashware: The future of web
applications. Technical report, Sun Microsystems, Feb
2009.

[35] Antero Taivalsaari, Tommi Mikkonen, Dan Ingalls,
and Krzysztof Palacz. Web Browser as an Application
Platform: The Lively Kernel Experience. Technical
Report SMLI TR-2008-175, Sun Microsystems,
January 2008.

[36] Mark J. Taylor, J. McWilliam, H. Forsyth, and
S. Wade. Methodologies and website development: a
survey of practice. Information and Software
Technology, 44(6), April 2002.

[37] The Internet Society. RFC 3253 DeltaV Specification.
http://www.webdav.org/specs/rfc3253.html, 2002.
As of Feb 10 2009.

[38] K. T. L. Vaughan, Jon Jablonski, Cameron Marlow,
Sunir Shah, and Ross Mayfield. Beyond the sandbox:
Wikis and blogs that get work done. In
PROCEEDINGS OF THE ANNUAL MEETING-
AMERICAN SOCIETY FOR INFORMATION
SCIENCE, volume 41, page 596. Information Today;
1998, 2004.

[39] Iwan Vosloo and Derrick G. Kourie. Server-Centric
Web Frameworks: An Overview. ACM Comput. Surv.,
40(2):1–33, 2008.

[40] Christian Wagner. Wiki: A Technology for
Conversational Knowledge Management and Group
Collaboration. Communications of the Association for

Information Systems (Volume13, 2004), 13:265–289,
2004.

[41] Alessandro Warth and Ian Piumarta. OMeta: an
Object-Oriented Language for Pattern Matching. In
DLS ’07: Proceedings of the 2007 symposium on
Dynamic languages, pages 11–19, New York, NY,
USA, 2007. ACM.

[42] Alessandro Warth, Takashi Yamamiya, Yoshiki
Ohshima, and Scott Wallace. Toward A More Scalable
End-User Scripting Language. In Proceedings of the
Conference on Creating, Connecting and Collaborating
through Computing (C5), pages 172–178, Los
Alamitos, CA, USA, 2008. IEEE Computer Society.

[43] Yahoo. Pipes. http://pipes.yahoo.com/pipes/,
2008. As of Sep 23 2008.

[44] Takashi Yamamiya, Alessandro Warth, and Ted
Kaehler. Active Essays on the Web. In Proceedings of
the Conference on Creating, Connecting and
Collaborating through Computing (C5). IEEE, January
2009.

