
Implementing Scoped Method Tracing with ContextJS

Jens Lincke Robert Krahn Robert Hirschfeld
Hasso-Plattner-Institut

Universität Potsdam, Germany
{firstname.surname}@hpi.uni-potsdam.de

ABSTRACT
Customized method tracers can be a valuable tool for de-
bugging and program comprehension. They allow to declar-
atively specify what parts of the call graph should be cap-
tured and are an alternative to tedious manual debugging
techniques. Method tracers are easy to implement in dy-
namic languages but avoiding multiple method instrumen-
tation and recursion in the client code can become com-
plex. In this paper we show how Context-oriented Pro-
gramming (COP) can be leveraged to address such issues.
Our approach is based on ContextJS, a COP implementa-
tion for JavaScript, which provides scoping mechanisms and
an infrastructure for method instrumentation. These ab-
stractions allow to separate target and tracer logic so that
self-referentiality is avoided.

1. INTRODUCTION
Tracing is a debugging and program comprehension tech-

nique programmers refer to when simple printf style logging
and manually stepping through the debugger become to te-
dious.

Dynamic analysis tools may help gaining insights in the
dynamic behavior of programs. But when such tools are
not available or programmers encounter specific needs they
might employ a custom tracer. Implementing tracers in dy-
namic languages like JavaScript is easier than implement-
ing them with less reflective languages like C or Java.
JavaScript’s reflective capabilities are expressive enough to
implement a method call tracer directly by manipulating ob-
jects. Modifying source or binary code or instrumenting the
virtual machine is not needed.

However, creating such dynamic and reflective meta pro-
grams can also be challenging. When the tracer is defined
and executed in the same environment as the code under
development it should, for example, not accidentally cap-
ture its own execution. Using Context-oriented program-
ming (COP) [2,4] can help to avoid such issues by expressing
such meta code as a separate concern.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Context-oriented Programming provides infrastructure
and scoping mechanisms to directly describe such con-
cerns in a tracer. Dynamic scoping by withLayers and
withoutLayers in ContextJS [9] our COP implementation for
JavaScript allows to separate target and tracer code so that
the tracer does not accidentally trace itself.

Tracing behavior is a typical homogenous crosscutting
concern [1] which means that one piece of code should be
executed in several places. In contrast to Aspect-oriented
Programming (AOP) [7], COP has no explicit support for
expressing such concerns, but standard meta programming
facilities in JavaScript allow to overcome such limitations.

In this paper, we make the following contributions:

• We describe how scoping of behavioral adaptations
with the (de-)activation of COP layers makes the im-
plementation of a method tracing easy

• We show how COP infrastructure can be leveraged to
avoid multiple method instrumentations

• We demonstrate how in dynamic languages homoge-
nous concerns can be represented by COP layers using
simple meta programming

The remainder of the paper is structured as follows. Sec-
tion 2 discusses the problems of implementing a simple
method tracer in JavaScript. Section 3 gives a short intro-
duction of COP and ContextJS and Section 4 demonstrates
how ContextJS can be used to address these problems. Sec-
tion 5 shows two examples of using customized tracing. Sec-
tion 6 discusses related work and Section 7 concludes.

2. TRACING WITH JAVASCRIPT
In the following we demonstrate problems that occur when

building a custom tracer from scratch in a dynamic language
such as JavaScript. Listing 1 defines two JavaScript objects
Target and Transcript. The object Target should be instru-
mented to capture its method invocations.1

Implementing method call tracing can be accomplished
by JavaScript’s build in meta programming facilities. In
JavaScript everything is build out of objects and functions,
so methods are defined by putting functions in object prop-
erties. The difference to normal function calls is that the
this pseudo variable is bound to the object at call time (in
Figure 1, m2 is defined in Line 3 and called in Line 20). List-
ing 2 shows how adding additional behavior to methods m1

1The examples be tested out online under http:
//www.lively-kernel.org/repository/webwerkstatt/demos/
contextjs/SimpleObjectTracing.xhtml (visited 2011-04-20)

1 Target = new Object();
2 Target.m1 = function(a) { return a * 2};
3 Target.m2 = function() { return this.m1(this.p)};
4 Target.toString = function() {return "Target"}
5 Target.print = function() {
6 Transcript.show(this + ", p = " + this.p)
7 };
8

9 // Definition of simple tool object
10 Transcript = new Object();
11 Transcript.toString = function() { return "Transcript" };
12 Transcript.items = [];
13 Transcript.show = function(s) {
14 alert(s);
15 this.items.push(s);
16 }
17

18 // Usage
19 Target.p = 3;
20 Target.m2() // evaluates to 6
21 Target.print() // "p = 3" is displayed

Listing 1: Definition of an example object

1 var orgM1 = Target.m1;
2 Target.m1 = function(a) {
3 Transcript.show("m1 " + a);
4 return orgM1.apply(this, arguments)
5 }
6 var orgM2 = Target.m2;
7 Target.m2 = function() {
8 Transcript.show("m2");
9 return orgM2.apply(this, arguments)

10 }

Listing 2: Wrapping methods around other methods
in JavaScript. This allows adding behavior without
changing the original source.

and m2 can be accomplished without changing the source
code. The original functions of that method are wrapped in
a function that executes new behavior (Line 3) before eval-
uating the original function stored in orgM1. Abstracting
this example further leads to the method trace as shown in
Listing 3.

The method trace allows to trace arbitrary methods in-
vocations in objects shown in Listing 4. The tracer works
but includes some unobvious problems. First, instrument-
ing method m1 twice results in capturing that method m1 two
times in the Transcript (see Listing 5). The tracer has no
knowledge that it has instrumented that method already.

Furthermore, the Tracer might accidentally trace itself
indirectly. Listing 6 shows how the method show of the
Transcript object is instrumented. But the trace code itself
makes use of the Transcript (see Line 6 in Figure 3). This
leads to an unexpected endless recursion when the Tracer

calls the Transcript which then calls the Tracer and so on.
The same problems occur when the Tracer is further gen-

eralized to automatically trace all methods of an object. The
traceObject method in Listing 7 implements this exemplary.
Multiple objects with a common prototype may be traced
at once by installing tracers in a prototype object. Since
classes are implemented this way in JavaScript, discussing
the tracing of objects is sufficient. The toString method
is automatically instrumented by the traceObject method.
Since the toString method is used in the Tracer’s log method

1 Tracer = new Object();
2 Tracer.log = function(object, methodName, args) {
3 Transcript.show(object + "’s " + methodName +
4 " was called with " + args.length + " arguments")
5 };
6

7 Tracer.trace = function(object, methodName) {
8 var orgFunc = object[methodName];
9 object[methodName] = function() {

10 Tracer.log(this, methodName, arguments);
11 return orgFunc.apply(this, arguments)
12 }
13 }

Listing 3: Definition of a simple tracer in JavaScript

1 Tracer.trace(Target, "m1")
2 Tracer.trace(Target, "m2")
3 Tracer.trace(Target, "print")
4 // Call methods after Tracing
5 Target.m2()
6 Target.print()

Listing 4: Trace individual methods

1 (A)
2 Target’s m2 was called with 0 arguments
3 Target’s m1 was called with 1 arguments
4

5 (B)
6 Target’s m2 was called with 0 arguments
7 Target’s m2 was called with 0 arguments
8 Target’s m1 was called with 1 arguments
9 Target’s m1 was called with 1 arguments

Listing 5: (A) Transcript of calling m2 (B) after ac-
cidentally instrumenting m1 and m2 twice

1 Tracer.trace(Transcript, "show")
2 Target.print() // ERROR because of endless recursion

Listing 6: Error when the ”Transcript” should be
traced

1 Tracer.traceObject = function(object) {
2 for (var name in object) {
3 if (object.hasOwnProperty(name) &&
4 (typeof object[name] == "function")) {
5 alert("trace " + name)
6 this.trace(object, name)
7 }
8 }
9 }

10 Tracer.traceObject(Target)

Listing 7: Usage of JavaScript introspection to trace
all non-inherited methods of an object.

the tracer ends up in an unexpected endless recursion again.
To address such issues tracing code has to be self-reflective

to ensure that it does not trace itself. A solution is to check
inside every traced method if it is used in the context of a
tracer. Context-oriented programming provides such expres-
siveness.

3. CONTEXT-ORIENTED PROGRAM-
MING

Context-oriented programming [2, 4] (COP) extends
object-oriented programming by providing dedicated lan-
guage abstractions for defining and composing variations to
basic program behavior. Behavioral variations are encap-
sulated by layers, modules that can crosscut classes or in
the case of JavaScript objects. Layers can be dynamically
de-/activated—and composed with other layers—for the dy-
namic extent of a code block. This mechanism allows for
scoping behavioral variations to specific control flows.

ContextJS is a JavaScript language extension for Context-
oriented programming. It is implemented as a library and
allows for defining behavioral variations for JavaScript ob-
jects, that can be (de-)activated depending on context. Con-
textJS supports various approaches for scoping behavioral
adaptations such as global, dynamic, instance-specific and
structural scoping [9]. ContextJS changes only the execu-
tion of adapted methods in a system. This means objects
and methods that no layer refines run totally unaffected.

Listing 8 shows how:

(A) a TranscriptLayer can be created.

(B) the behavior of the object Target is refined

(C) the behavior variation is activated for the execution of
a code block

(D) the behavior variation is deactivated for the execution
of a code block

The layer (de-)activations follows a stack like discipline [2].
Inner method deactivations cancel out outer layer activa-
tions and vice vera. Furthermore the whole layer composi-
tion can be customized by the objects themselves in Con-
textJS. We discussed the open implementation of such layer
activation strategies like the scoping of behavioral variations
to specific object structures in a previous paper [9].

1 // (A) layer creation
2 cop.create("TranscriptLayer")
3

4 // (B) object refinement
5 TranscriptLayer.refineObject(Target, {
6 m1: function(a) {
7 Transcript.show("m1 " + a)
8 return cop.proceed(a)
9 },

10 m2: function(a) {
11 Transcript.show("m2")
12 return cop.proceed()
13 },
14 })
15

16 // (C) layer activation
17 withLayers([TraceLayer], function() {
18 Target.m2()
19 })
20

21 // (D) layer deactivation
22 withoutLayers([TraceLayer], function() {
23 Target.m2()
24 })

Listing 8: ContextJS Syntax Example

1 cop.create("TraceLayer")
2 Tracer.trace = function(object, methodName) {
3 var layeredMethodDef = {};
4 layeredMethodDef[methodName] = function() {
5 var args = arguments;
6 var obj = this;
7 withoutLayers([TraceLayer], function() {
8 Tracer.log(obj, methodName, args);
9 })

10 cop.proceed.apply(this, args)
11 }
12 TraceLayer.refineObject(object, layeredMethodDef);
13 }

Listing 9: Implementing the trace function with
ContextJS

4. CONTEXTJS TRACER
ContextJS can (de-)activate behavior variations for spe-

cific control flows. We can define tracing behavior in a layer
and deactivate it when processing the method invocation in
the Tracer itself. The definition of tracing as a separated
concern is similar to the plain JavaScript version in List-
ing 3. Listing 9 shows how the trace method generates a
function and stores it as partial method in the TraceLayer.
The cop.proceed.apply(this, args) statement proceeds to
the next layer (in most cases the original implementation) if
there are no other active layers.

When using ContextJS-based trace, the instrumentation
expression Tracer.trace(Target, "m1") can be called as often
as needed. Since ContextJS handles method wrapping, the
tracing code cannot accidentally be installed multiple times.

As a result of representing the tracing concern as a layer
the tracing can be activated as needed as shown in List-
ing 10.

The second problem described in Section 2 is that the
original tracer can accidentally use methods that trace itself.
This can be taken care of by putting the instrumentation
code inside a withoutLayers statement as shown in Line 7 of
Listing 9. Listing 11 shows how Transcript’s show method

1 Tracer.traceObject(Target)
2

3 Target.m2() // without tracing
4

5 withLayers([TraceLayer], function() {
6 Target.m2() // with active tracing
7 })

Listing 10: Installing the tracer and calling m2 with
and without activated TraceLayer

1 Tracer.trace(Transcript, "show")
2 withLayers([TraceLayer], function() {
3 Target.print()
4 })

Listing 11: Tracing the Transcript without running
into an endless recursion

can now be instrumented without running into the endless
regression. The TracingLayer is deactivated when called from
the Tracer.

5. EXAMPLES
This section shows two example applications of the Con-

textJS tracer. The examples are taken from our work
with the Web-based development environment Lively Ker-
nel [6,8,10]. During our development we employ ContextJS
on a regular basis and use the project as a source and test-
bed for new application scenarios of COP.

5.1 Finding a Font Size Bug in Lively Kernel
The first example demonstrates how customized tracing

can be used to find bugs that are not easily debuggable with
standard tools. The issue we wanted to debug was that
changing the font size of lists resulted in unexpected big list
items as shown in Figure 1. To figure out the reason for
the unexpected behavior we had to debug the Lively Kernel
list abstractions. With the help of the customized tracer
in Listing 12 we found out where the extent of the items
changed and that the padding property was responsible as
shown in Figure 2.

Figure 1: Reproduction of setFontSize Bug in a
Lively Kernel Web-based development environment.
The list items got very big with a 14pt font com-
pared with 12pt.

1 ObjectTracer.instrument([TextMorph]);
2 ObjectTracer.current().logEnterMethod =
3 function (obj, methodName, args, config) {
4 withoutLayers([ObjectTraceLayer], function() {
5 if (this.ignoreList.include(methodName))
6 return;
7 var info = this.indentString() ;
8 info += obj.constructor.name;
9 if (config && config.category) {

10 info += " [" + config.category +"] " };
11 info += methodName;
12 if (obj && obj.name) {
13 info += " name=" + obj.name +" " };
14 if (obj.getExtent) {
15 try {
16 info += " extent=" + obj.getExtent();
17 } catch(e) { }
18 };
19 this.log(info)
20 this.stackDepth ++;
21 }.bind(this));
22 }

Listing 12: A customized tracing method that pro-
duced the trace in Figure 2. It uses an ObjectTracer

which is similar to the simpler one discussed in Sec-
tion 4.

Using a debugger to step through the code would have
been possible, however, using it to understand such com-
plex behavior can be tedious. Traditional debuggers force
the user to decide which methods to step over and which to
step into. Without having an intimate knowledge of the code
to debug this approach can require to restart time consum-
ing debugging sessions several times. Using our customized
tracing shown in Listing 12, we could declaratively adjust
and refine the subject and location for what we were looking
for. Repeating a run with the failing example was effortless
because no manual user interaction was required.

Since the development environment Lively Kernel is self-
sufficient it is crucial to separate tool logic from the source
code under development. In the example above, TextMorph

objects were instrumented. Since these objects were also
used in the development environment, the ability to scope
tracing to the actual execution of test snippets was impor-
tant.

5.2 Understanding Layout Behavior
The second example shows how tracing was employed for

understanding and profiling a new layout algorithm. We
used tracing to visualize how graphical objects (Morphs) in-
teract in the layouting process. We were only interested in
methods of the class Morph, ignoring for example all meth-
ods in classes like Point, Rectangle, Array or String. The
customized tracing and profiling did not only show only
those methods, it further colored the lines in the trace so
that morphs could be identified by their color as shown
in Figure 3. Using a profiler in a meta level like the We-
bKit JavaScript tool suite, the profiling tools cannot be
customized at runtime. Such profiles often show an over-
whelming amount of information and developers cannot eas-
ily adapt them to mitigate those problems.

By using context specific scoping, tools can be separated
from the domain objects like in external tool suites but can
still be directly customizable.

Figure 2: Dynamic analysis and source code of the setFontSize bug in Figure 1. The interesting places where
highlighted by the developer in the debugging process for documenting the issue.

Figure 3: Tracing the method setExtent of Morphs
(graphical objects) in the Lively Kernel. The trac-
ing code is customized to produce colored text that
matches color of the graphical object.

6. RELATED WORK
A practical example how meta programming can be used

in Web-based development environments [6] is a profiler im-
plemented by wrapping JavaScript methods. The profiler
is a Web-browser independent tool for analyzing JavaScript
performance. Different to our approach presented profiler
does prevent multiple instrumentations and end-less recur-
sions when instrumenting code used in the profiler.

Tracing is a typical use case for Aspect-oriented Program-
ming (AOP) [7]. In the reverse engineering tool ARE [3]
AspectJ is used to instrument method calls. These calls
are later filtered out by a pluggable system. Programs are
instrumented by linking the tool as a library into the pro-
gram under development. Different to our approach ARE
has to instrument every method call because the scope of
the tracing advice cannot be scoped at runtime.

Frameworks like Valgrind [12] and Pin [11] allow to in-
strument programs at runtime. This allows developers to
build customized dynamic analysis tools. These frameworks
instrument programs at the machine level and not at the
object level. These frameworks avoid reentrance and recur-
sion problems that might be caused from tools calling code
which is under instrumentation by executing the analysis
tools with a separate set of libraries [11].

7. CONCLUSION
In this paper we showed how a customized method tracer

can be implemented in a dynamic language like JavaScript.
As contributions we showed how COP technology can be
used to scope the tracing so that the tracer does not ac-
cidentally trace its own custom code. We further showed
how simple meta programming can be used to express ho-
mogenous concerns in our ContextJS COP implementation.
In two examples from our work with the Lively Kernel, we
showed how customizable tracers can be a valuable tool for
program comprehension, debugging, and profiling.

Tracing is an excellent use case for the withoutLayers con-
struct, which provides clean and reliable mechanisms to sep-
arate instrumented code from the instrumentation itself. In
environments where the target system and the instrumen-
tation code are strongly separated this is not so much an
issue. In self supporting-systems [5] like the Lively Kernel,

it is very important that tools like tracers are self aware
so that they do not measure themselves or produce endless
regressions. Putting tracing code into a layer that can be
(de-)activated depending on the context solves this problem
elegantly.

Tracing is a typical case of homogeneous cross-cutting con-
cerns, which normally cannot be expressed by COP. By us-
ing standard JavaScript meta programming this could be
overcome. COP implementations in less dynamic environ-
ments might not be used in this way.

In future work we will analyze how other cross-cutting
concerns like an Undo history in Lively Kernel are easy to
implement with COP.

8. REFERENCES
[1] S. Apel, D. Batory, and M. Rosenmüller. On the

Structure of Crosscutting Concerns: Using Aspects or
Collaborations. In GPCE Workshop on
Aspect-Oriented Product Line Engineering (AOPLE),
2006.

[2] P. Costanza and R. Hirschfeld. Language Constructs
for Context-oriented Programming: An Overview of
ContextL. In DLS ’05: Proceedings of the 2005
symposium on Dynamic languages, pages 1–10, New
York, NY, USA, 2005. ACM.

[3] T. Gschwind and J. Oberleitner. Improving Dynamic
Data Analysis with Aspect-Oriented Programming.
European Conference on Software Maintenance and
Reengineering, 0:259, 2003.

[4] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented Programming. Journal of Object
Technology, 7(3):125–151, March - April 2008.

[5] R. Hirschfeld and K. Rose, editors. Self-Sustaining
Systems, First Workshop, S3 2008, Potsdam,
Germany, May 15-16, 2008, Revised Selected Papers,
volume 5146 of Lecture Notes in Computer Science.
Springer, 2008.

[6] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and
T. Mikkonen. The Lively Kernel A Self-Supporting
System on a Web Page. In R. Hirschfeld and K. Rose,
editors, S3 2008, LNCS 5146. Springer-Verlag Berlin
Heidelberg, 2008.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented Programming. In Ecoop 1997,
Proceedings 11th European Conference on
Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, 1997.

[8] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and
K. Palacz. Lively Wiki A Development Environment
for Creating and Sharing Active Web Content. In
WikiSym ’09. ACM, 2009.

[9] J. Lincke, M. Appeltauer, B. Steinert, and
R. Hirschfeld. An Open Implementation for
Context-oriented Layer Composition in ContextJS.
Science of Computer Programming, In Press,
Corrected Proof, 2011.

[10] J. Lincke, R. Krahn, D. Ingalls, and R. Hirschfeld.
Lively Fabrik - A Web-based End-user Programming
Environment. In Proceedings of the Conference on
Creating, Connecting and Collaborating through
Computing (C5) 2009, Tokyo, Japan, 2009. IEEE.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’05, pages 190–200, New York, NY, USA, 2005.
ACM.

[12] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. Electronic Notes in Theoretical
Computer Science, 89(2):44 – 66, 2003. RV ’2003,
Run-time Verification (Satellite Workshop of CAV
’03).

