
Collaboration in Lively
Seminar Web-based Development Environments

Fabian Garagnon and Kai Schlichting

Hasso-Plattner-Institut, Potsdam
{fabian.garagnon,kai.schlichting}@student.hpi.uni-potsdam.de

Abstract. Wiki pages and developer journals are the home of dynamic
and frequently changing content. Such applications written with Lively
Kernel lack of the possibility that several users can edit different parts of
a page at the same time.
We introduce a collaboration framework for Lively that allow users to see
other users’ changes in real-time. This report discusses a command-based
approach that addresses this topic and shows one concrete implementation
for this problem.

1 Introduction

Typical web activities like editing of a web page by several users at the same time
are editing Wiki pages, writing papers, creating presentations and others. Those
applications are made possible by Lively Kernel out-of-the-box since it allows
changing the interface (and its behavior) of a web page in the browser. When
saving a page, the whole DOM structure is saved into a subversion repository
whereby changes made by others simultaneously get lost.

Collaboration tools enables several people working on the same thing in real-
time. In Lively, such a framework could make possible that two users are writing
a text together and a third user is changing the design on the same page. This
way, changes can be applied in parallel without having to wait for other users
finishing their work. Additionally, ideas can be shared immediately and other
users can give feedback directly.

The main goal of this project is to solve frequent synchronization issues
in a multi-user environment like the Lively Kernel Webwerkstatt Wiki1. This
synchronization should be in nearly real-time so that every user can see the
others working on a Wiki page. Normal activities like adding of new morphs,
change position, resizing or editing text is synchronized. There should be no
spontaneously changes (e.g. a morphing "jumping" from one place to another),
therefore users see other mouse cursors and know in which part of the page the
others are working.

Although no direct goal of this project, the resulting framework should be
extensible by more advanced collaboration features: Conflict management won’t
1 http://lively-kernel.org/repository/webwerkstatt/webwerkstatt.xhtml



2 Garagnon, Schlichting

be available in the first step, but the solution should allow to use operational
transformations [5] (which is an optimistic approach) to solve conflicts effective.
Another neat but not as necessary feature would be a time-slider which gives
each user the opportunity to travel back in time and view the Wiki page a few
clicks behind (as seen in EtherPad2 [1]).

The remainder of this paper is structured as follows: The next section in-
troduces our command-based collaboration approach. Section 3 presents the
framework design and architecture, while section 4 discusses special implementa-
tion considerations. Finally, section 5 concludes and points to future work.

2 Approach

This section explains our approach for implementing basic collaboration fea-
tures into the Lively kernel. For this purpose a framework is needed that allows
synchronizing changes of one user with others.

A first question that have to be discussed is the level on which changes should
be observed and recorded. In browser environments, there are at least three poten-
tially suitable levels: (a) Events from input devices (mouse, keyboard), (b) changes
in DOM structure or (c) calls to the JavaScript API. Propagating mouse and key-
board events from one users to another (a) has the drawback that button clicks
with non-local side effects (e.g. deleting a record on a server) would be called twice.
Synchronizing DOM changes like a newly added SVG node (b) would create a com-
mon view on the currently opened page, but doesn’t execute related JavaScript
code: A new button is visible to all users, but no action handlers is assigned to the
button since this requires JavaScript. The most promising solution to our prob-
lem is to listen to basic Lively API calls (c) (like TextMorph#setTextString,
Morph#setPosition or Morph#addMorph) and propagate them to other clients.
This way, the JavaScript object state keeps synchronized while the propagated
method calls care about updating the underlying DOM.

To record the method calls made to the Lively API, we decided for a command-
based interaction (Figure 1): When a method is called, a command is created
locally in the client encapsulating all the information needed to execute and undo
the method later on other clients. This information includes particularly the
arguments of the called function and the current state for undoing (e.g. a call to
Morph#setPosition saves the new and the old position). After having created
the command, it is executed locally to ensure fast feedback to the user (optimistic
approach). Then the command object is serialized and send to the server so that
other clients get informed about the change. The server assigns an ascending id
to the command and puts it at the end of the global command queue which is
solely managed on server side. The id of the command defines the order of the
command queue, and clients have to assure that commands are executed in the
given order. Finally, the command is sent to all clients, who arranges it in their
local command queue and execute it according to the command’s id. The client
2 http://etherpad.com/



Collaboration 3

which created the command in the first place doesn’t execute the command a
second time, but the assigned id have to be checked with the order in its local
command queue. If other commands have been received in the meantime, the
command has to be undone and wait its turn.

user starts typing

Client Server

assign ascending id 
to command

arrange in global 
command queue

create new 
command object

execute command 
locally

send command 
object to server

send command to all 
clients

Other Client

arrange in local 
command queue

execute command

apply user's 
changes

undo and reexecute 
command if necessary

Fig. 1: Command life cycle using the example of an user who is typing text

During a collaboration session, all incidental commands are stored on the
server side. As soon as a user presses Lively’s built-in save button, a new milestone
is created (which just references current command’s id). When a new user joins
an existing session, he receives a unique user id and a list of all commands that
have been created since the last milestone. To implement a playback/ time-slider
feature as mentioned in the introduction, a user could switch between milestones
(and the accordant commands belonging to this milestones) and see all visual
changes that have been made in the meantime.



4 Garagnon, Schlichting

3 Architecture

This chapter describes the architecture of the collaboration framework for the
Lively kernel in detail. Figure 2 shows the overall architecture: A Lively ap-
plication is embedded in the web environment and is therefore a client server
architecture. On the client side, a Command Manager executes or undoes com-
mands and queues new commands in the Local Command Queue. When the
client creates a new command, it is serialized and send to the server as explained
in section 2. On the server side, a web server is listening for new client connections
and commands at which the latter are stored in the Global Command Queue.

Browser

Global Command 
Queue

Lively Kernel

Command Manager Collaboration Server

Server

Local Command 
Queue

Fig. 2: High-level architecture of collaboration framework

Next subsections will explain the client and server architecture in more detail
(see figure 3).

3.1 Client Architecture

The client intercepts some core Lively morph methods with ContextJS to record
the user’s (visual) changes (see table 1). These methods are grouped into three
ContextJS layers, which can be separately switched on and off. Since some func-
tionality (especially the onMouseMove) can produce much synchronization over-
load, this might be helpful in situations with slow internet connection.. The
Command Manager queues the commands and sends them via the Connection
singleton instance to the server.

The Connection singleton holds a persistent connection to the server which
is established as soon as a client opens a collaboration-enabled Lively page. This
connection is realized through the emerging WebSocket [3] technology, which
allows bidirectional communication with a smaller footprint. Thus, pushing mes-
sages (in our case primarily commands) from server to clients and the other way
round is easily possible without much overhead - it’s much like using sockets in
desktop programming.



Collaboration 5

Layer Class Method
CollabMorphLayer Morph rotateBy

translateBy

setPosition

...
CollabMouseMove Morph onMouseMove

CollabTextMorphLayer TextMorph setTextString
Table 1: Overview of intercepted Lively methods

3.2 Server Architecture

The architecture of the server is shown on the right side of figure 3. The server is
split into two main parts, the Collaboration Server acting as the web server
and the Redis Server representing the database. The Collaboration Server
is written in Node.js3, an event-driven I/O framework that enables writing server-
side JavaScript. Redis4 is an in-memory key-value store that allows advanced
data types as values (e.g. strings, lists, sets, ...) and can persist its data to the
disk in configurable intervals. It perfectly fits in the collaboration use case since
it provides fast access to the data while being semi-persistent so that most of the
data can be restored when the server crashes.

The Collaboration Server accepts WebSocket connections and commands
from clients. Every command is saved into the Redis database to enable the
playback of commands and inform new clients about the stored commands. Table
2 gives an example snapshot of the Redis database to show which data is stored.
Every key is scoped to the user’s page URL so that commands of different pages
aren’t merged.

The Collaboration Server uses the publish/ subscribe mechanism (based
on channels) of Redis to send new commands to every client. Three channels are
exposed by the Collaboration Server: commands, milestones and mouse. All
channels, except for the mouse cursor, are saved semi-persistent into the Redis
key-value store. Mouse cursor events are directly propagated to all clients since
they are only of interest in a short time slice. Thus, the Server subscribes to the
command channel in Redis with a callback, which is called every time the server
publishes a new command from a client. This callback function sends then the
published command to every client.
3 http://nodejs.org/
4 http://code.google.com/p/Redis/



6 Garagnon, Schlichting

Browser

Node.js

Key-Value
Storage

Morph ● ● ●
Text

Morph

ContextJS

WebSocket

Lively Kernel

Command Manager

Connection

Redis Client

Collaboration Server

Server

Redis Server

Fig. 3: Detailed client and server architecture of collaboration framework

4 Implementation Considerations

4.1 Globally unique IDs

When a user updates a morph on his page, the changes have to be sent to the
accordant morph on the other users’ pages. Therefore, globally unique IDs are as-
signed to all new morphs so that a morph can be unambiguously identified on each
page. We extended the ID generation in Lively to avoid conflicts (i.e. same ID gen-
erated on different clients for different morphs) by scoping all IDs to the current
user: Instead of generating IDs like 1234:Morph, lively.data.Wrapper#setId
add the user ID resulting in user541234:Morph5.

4.2 Object (de)serialization

As described in section 3.1, we are intercepting relevant morph methods to listen
to changes. Arguments are saved in command objects that have to be serialized
when sending to the server. Especially when it comes to serializing whole morphs,
i.e. for Morph#addMorph synchronization, a smarter serialization approach is
necessary to handle circular references and already existing objects. [2] provides
a Relaxer and Restorer class for (de)serialize Lively morphs that could be easily
adopted for our use case: When adding a new morph (which might contain sub
morphs, for example), all references to other morphs are only saved by their IDs
so that a quite flat JSON structure is generated. Other clients can then deserialize
this structure and restore all previous relationships.
5 a colon as separator couldn’t be used here since some existing code relied on the class

name after the first colon



Collaboration 7

Key Example Value
<url>//milestones ["140", "234"]
<url>//commands-current-id "336"
<url>//commands [{

id:336",
commandType:"SetPositionCommand",
morphId:"user_0366079:Morph",
val:{x:10, y:10},
oldVal:{x:5, y:5},
timestamp:"1280353890466",
userId:"user_0"

}]
<url>//users ["user_1", "user_2"]

Table 2: Exemplary snapshot of Redis key-value database

4.3 WebSockets

Websockets are a fully bidirectional and slim protocol from the upcoming HTML5
standard. The decision for Websockets as the protocol between the client and
the server was taken, because of the need for nearly realtime bidirectional com-
munication. There is a japanese website6 on which everyone can test the speed
difference between Websockets and XML HTTP requests (Ajax). With the latest
Google Chrome browser the benchmark of the website shows that WebSockets
are nearly 40 times faster than the Ajax requests.

5 Summary & Outlook

Some special events are intercepted by the use of ContextJS. These events are
transformed into a command and send through WebSockets to the server, which
saves the commands in the key/value store Redis. Via this mechanism nearly
every Wiki page can be made collaborative.

At this stage of the project users can collaboratively work on a wikipage and
add new morphs or drag them around, or even complex actions like adding new
journal entries. All these actions are synchronized between the server and all
users. Each user can even see the mouse cursors of the other users.

General Outlook In the future there will be a client side time slider, which enables
each user to travel back in time, via undoing the saved commands. The user
name next to each users mouse will be the login name and not an anonymously
generated one. Near the time slider there can be a button or checkbox to easily
switch the collaboration on and off. These two user interaction elements can be
grouped to a preference pane. If one user saves the Wiki page, this could be
6 http://bloga.jp/ws/jq/wakachi/mecab/wakachi.html

http://bloga.jp/ws/jq/wakachi/mecab/wakachi.html


8 Garagnon, Schlichting

intercepted and every command saved on the server before this event can be
deleted.

In the future there have to be also a feature to suppress the synchronization
of some events. At the moment the menus from every user are synchronized to
every other user, which is not the preferred behavior.

Conflict Management The conflict management could be extended to Operational
Transformations, because in our solution it depends on the action taken by the
users, which user will win. For example, if two users are positioning the same
morph, the last command that arrives at the server will win. This is because the
position of a morph is absolute and so the last value will be used. An example
in which the first user wins is, if one user deletes a morph before another can
change the size of that morph. The deletion will invalidate the resizing command
of that morph.

Consecutive projects which will implement a better conflict management are
welcome.

Clock synchronization Events which are not originated by a user action, like the
tick of a ClockMorph are produced by every client nearly at the same time. These
multiple events could also collide with each other, if the users are in different time
zones. There are multiple solutions to solve these kind of conflicts, one solution is
that only one client produces these special events. But the problem with different
time zones is not considered with this solution. Not synchronizing these kind of
events would be another result to this problem.

References

1. Etherpad time-slider. http://www.youtube.com/watch?v=Endvb81oz80 (2009)
2. Dannert, J.: WebCards - Entwurf und Implementierung eines kollaborativen, graphis-

chen Web-Entwicklungssystems für Endanwender (2009)
3. Hickson, I.: The websocket api. W3C Working Draft 22 December 2009 (2010)
4. Nichols, D.A., Curtis, P., Dixon, M., Lamping, J.: High-latency, low-bandwidth

windowing in the jupiter collaboration system. In: UIST ’95: Proceedings of the 8th
annual ACM symposium on User interface and software technology (1995)

5. Wang, D., Mah, A., Lassen, S.: Google wave operational transformation. http://wave-
protocol.googlecode.com/hg/whitepapers/operational-transform/operational-
transform.html (2010)


	Collaboration in Lively
	Introduction
	Approach
	Architecture
	Client Architecture
	Server Architecture

	Implementation Considerations
	Globally unique IDs
	Object (de)serialization
	WebSockets

	Summary & Outlook


