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ABSTRACT

Jupiter is a multi-user, multimedia virtual world intended to
support long-term remote collaboration. In particular, it sup-
ports shared documents, shared tools, and, optionally, live
audio/video communication. Users who program can, with
only moderate effort, create new kinds of shared tools using
a high-level windowing toolkit; the toolkit provides trans-
parent support for fully-shared widgets by default. This
paper describes the low-level communications facilities
used by the implementation of the toolkit to enable that sup-
port.

The state of the Jupiter virtual world, including application
code written by users, is stored and (for code) executed in a
central server shared by all of the users. This architecture,
along with our desire to support multiple client platforms
and high-latency networks, led us to a design in which the
server and clients communicate in terms of high-level wid-
gets and user events.

As in other groupware toolkits, we need a concurrency-con-
trol algorithm to maintain common values for all instances
of the shared widgets. Our algorithm is derived from a fully
distributed, optimistic algorithm developed by Ellis and
Gibbs [12]. Jupiter’s centralized architecture allows us to
substantially simplify their algorithm. This combination of a
centralized architecture and optimistic concurrency control
gives us both easy serializability of concurrent update
streams and fast response to user actions.

The algorithm relies on operation transformations to fix up
conflicting messages. The best transformations are not
always obvious, though, and several conflicting concerns
are involved in choosing them. We present our experience
with choosing transformations for our widget set, which
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includes a text editor, a graphical drawing widget, and a
number of simpler widgets such as buttons and sliders.
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1 INTRODUCTION

Jupiter supports long-term collaboration by providing a

shared, persistent virtual world composed of network places

[7]. By mirroring some of the ways people use physical

places, network places provide a context in which

® users can work individually or with other users, by mov-
ing between (virtual) places,

® users can organize the materials they are working on and
the resources they are using by distributing them among
the places, and

® other users, materials, and resources can be brought into
an activity at any time, immediately gaining access to the
full context of the activity.

In addition, the Jupiter world is intended to be highly cus-
tomizable by its users, so that they can adapt it to their needs
as readily as people adapt physical spaces. This includes
facilities for creating new places, connecting existing
places, moving objects among places, creating new
instances of generic objects, modifying the behavior of
existing objects, and creating completely new types of
generic objects. These last two capabilities involve writing
programs in Jupiter’s internal interpreted programming lan-

guage.

One of the key characteristics of Jupiter is that all objects
there are shared and persistent. This applies to the places
themselves, to the documents or other materials, and to the
tools. For example, the Whiteboard is a useful generic
object that provides a drawing surface with simple sketching
tools. As users come and go from the place containing the
whiteboard they may open it, see its contents, and edit them;
any number of users may be simultaneously viewing and
editing it. Even if all the users leave the place, log out of
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Jupiter, and come back later, the whiteboard will retain the
drawing that was left on it.

Jupiter’s central server stores the state of virtual objects and
executes all of their associated program code. In contrast,
the client programs run by users on their local workstations
remain largely ignorant of this virtual-world model. Clients
simply manage their local input/output hardware of behalf
of the server and the user. In particular, clients create and
modify windows according to specifications received from
the server, report user input events to the server, and (when
available) capture, transmit, receive, and display audio and
video data under user and server control [8].

This paper describes the low-level, client/server communi-
cations facilities used by the implementation of the window-
ing toolkit to support Jupiter’s pervasive sharing between
users. The Jupiter programmer’s view of the toolkit will be
described in a separate, forthcoming paper.

Jupiter user interactions are subject to two sources of signif-
icant response latency, which occasionally cause delays up
to a few seconds. First, the serialization of server actions can
introduce contention for execution resources. More gener-
ally, though, some users connect to the system through high-
latency communications paths, such as low-bandwidth dia-
lup lines and long-haul or congested Internet routes. We
developed the design presented here in response to these
specific sources of latency, but the solutions described
would be applicable to any situation with the potential for
unacceptable user-event response times.

The server and client communicate in terms of high-level
widgets, such as sliders and text editors'. Both client and
server keep track of widget state, and communicate high-
level state changes, instead of low-level user events and
graphics primitives. This high-level protocol means they
transmit less information, and less frequently, than if a more
traditional networked window system (such as the X win-
dow system [25]) were used. Because windows can be
shared between several users, we need a concurrency con-
trol algorithm to maintain consistency.

The concurrency control algorithms use by groupware sys-
tems for sharing can be classified as being pessimistic or
optimistic. Pessimistic algorithms require communication
with other sites or with a central coordinator before making
a change to data. This communication can be made apparent
to the user, as with a floor control policy, or left implicit,
where the user’s program does the communication behind
the scenes. Even in the latter case, the user must wait for a
round-trip to the other sites before any change is finalized.

1. We use “client” to refer to the Jupiter client, which is the pro-
gram that runs on the user’s machine and displays windows on that
machine’s display. Our “server” runs application programs, which
make requests of the client and respond to user events reported by
it. The X window system [25] uses these words in the opposite
sense; “clients” are applications, and the “server” is the program
that displays the windows.
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Optimistic concurrency control, on the other hand, requires
no communication before applying changes locally. The
party making a change applies it immediately, then informs
the other parties of the action. If more than one participant
makes a change at the same time, a conflict resolution algo-
rithm creates compensating changes to move everyone to
the same final state.

Optimistic algorithms are well-suited for high-latency com-
munications channels since the results of a user’s actions
may be displayed without waiting for a communications
round-trip. For these reasons, we chose an optimistic algo-
rithm for Jupiter. The client always applies user changes
(such as moving a slider or typing new text) immediately,
without waiting for a server response, thereby providing
users with immediate feedback.

Another way of classifying concurrency control algorithms
is by whether they use a central coordinator or are fully dis-
tributed. Because Jupiter already had a central server main-
taining the persistent virtual world, it was natural for us to
use a centralized architecture.

The combination of these two choices turned out to simplify
our system design considerably. While there are example of
both centralized and distributed groupware systems using
pessimistic concurrency control, the systems using optimis-
tic algorithms are fully distributed. A distributed, optimistic
algorithm must be prepared to handle a change from any
participant at any time. Much of the complexity for these
algorithms comes from this requirement, and getting all the
cases right is very difficult.

Instead, Jupiter uses the optimistic protocol only for the
individual server-client links. To the server, each client
appears to be operating synchronously with respect to the
server’s actions. The server can thus use a simple change
propagation algorithm to keep all the clients updated and in
sync.

In the next section, we review related work. Sections 3 and 4
describe the toolkit’s design in more detail. In Sections 5
and 6, we describe the two-way optimistic algorithm, which
draws from previous work, then describe how it is used to
achieve n-way consistency. Section 7 discusses issues
related to choosing message transformations, a necessary
part of the optimistic algorithm we use.

2 RELATED WORK

The related work falls into two main categories, groupware
systems with their approaches to concurrency control, and
window systems that cope with low-bandwidth, high-
latency communication links.

A number of groupware systems provide either toolkits for
building shared applications, or specific shared applications
such as text or drawing editors. These include CoEx [20],
DistEdit [17], GroupDesign [16], GroupKit [24], the Grove
text editor [12], LIZA [14], MMConf [5], Rendezvous [21],
Suite [11], and Visual Obliq [3]. LIZA, Rendezvous, Suite
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and Visual Obliq use a centralized coordinator, while CoEx,
DistEdit, GroupDesign, GroupKit, the Grove text editor, and
MMConf are distributed.

Of these, GroupDesign and Grove are the only systems to
use optimistic concurrency control, and they have decentral-
ized architectures. As discussed above, these algorithms are
made more complex by having to support full n-way repli-
cation. The Jupiter two-way algorithm is derived from the
dOPT algorithm used by Grove. This paper extends their
work by showing a simplified algorithm that takes advan-
tage of the centralized architecture, and discusses the prag-
matics of designing the message transformations required
by the algorithm.

Jupiter is similar to Visual Obliq in a different way. Both
systems use techniques from the FormsVBT system for
Modula-3 [4] and provide tools for rapid prototyping of
shared applications. Visual Obliq requires that the applica-
tion explicitly manage sharing, while Jupiter provides
shared widgets. Also, Visual Obliq is not optimized for low-
bandwidth or high-latency communications.

Another group of systems deal with low-bandwidth commu-
nications channels in single-user window systems. These
systems use two basic approaches to dealing with low-band-
width: compression and code-shipping.

Compression systems include Xremote, Low-bandwidth X
(LBX) [13], Higher bandwidth X (HBX) [9, 10], and vari-
ous commercial programs for providing remote access to
Microsoft Windows connections, such as CarbonCopy.
They try to reduce the bandwidth used while keeping the
same semantics for the network protocol. Although remark-
able compression ratios can be achieved (HBX gets a 20:1
compression ratio in some cases), they do not eliminate the
round trips caused by user interactions such as keystrokes
and mouse clicks.

Jupiter eliminates many round-trips by only sending mes-
sages for larger-scale widget value updates, not for individ-
ual low-level keyboard and mouse events. However, it
requires a trade-off from the application designer: Jupiter
applications must use the Jupiter toolkit, and are thus lim-
ited to the set of widgets it provides.

The other approach to coping with slow networks is to split
the application into two parts, and send the code for one part
to the user’s machine where it can have fast access to the
display and input devices. This is done by Sun Microsys-
tems’ NeWS [15] and HotJava [26] systems, and by Bell
Lab’s Blit terminals [22]. We call this code-shipping.

The code-shipping approach is in principle very powerful,
since it allows the application to customize the communica-
tions protocol to its particular needs. An application can
send most of its user interface to the other side, and only
communicate high-level events, such as “please run this
database transaction with these inputs.” The Sam text editor
[23] for the Blit is an example of such an application.
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(VBox
(HBox
(Button %help (Text “Help”))
(Fill)
(Button %quit (Text (FGColor red) “Dismiss”)))
(Bar)
(TextEdit %contents (BGColor white)))

Figure 1: An example form for Jupiter. Figure 2
shows the resulting window.
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Figure 2: A window created by the form in Figure 1.

However, code-shipping forces the application designer to
write a distributed application. The program must be split
and a network protocol invented for it. While this is straight-
forward in some cases, the problems of distributed systems,
such as maintenance of replicated state, must be addressed
by the programmers of these system. In some systems, the
code shipped to the user interface engine must be written in
a different programming language from the application, fur-
ther complicating development.

Again, by trading off some generality, Jupiter is able to hide
these network problems from the application. The applica-
tion programmer sees a conventional toolkit interface, and
the protocols and remote code are handled by the system.

3 THE APPLICATION INTERFACE

Jupiter is built on top of an unmodified instance of the
LambdaMOO server; all of the server-side facilities
described here are written in the MOO programming lan-
guage [6]. The server contains a database of all the informa-
tion in the Jupiter environment, as well as a MOO
interpreter. Windowing applications are written by Jupiter’s
users and run in this server.

The programming interface presented to an application
writer is very similar to that of the FormsVBT system [1, 4].
A window is described with an S-expression that specifies
the types of widgets present and a containment hierarchy for
laying them out. For example, Figure 1 shows the descrip-
tion of a window we use for editable documents in Jupiter,
and Figure 2 shows how that window appears to the user.

This window consists of a vertical stack of things (VBox),
the first of which is a horizontal row (HBox) consisting of a
push-button named “help” containing the text “Help”, some
filler that serves to place the two buttons at either end of the
row, and another button named “quit” and displaying the
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Layout widgets

HBox, VBox horizontal or vertical composition
Fill, Glue, Bar  spacing between widgets

Rim, Border space around a widget subtree
Leaf widgets

Numeric a slider

StrokeEdit graphical display and interaction
Text output only

TextEdit full text editor

TextList list of text items to choose from
Typeln single-line input

Typescript append-only with user input
VideoPane displays a digital video stream

Filter widgets, which decorate a widget subtree

AudioHighlight flashes a border around the subtree
when a user speaks

shows a visible on/off value
push once or momentary

Boolean
Button

Table 1: Widget types available in Jupiter

text “Dismiss” drawn in red. Below this row is a thin black
line (Bar), and a text editor widget named “contents”.

The name on a widget is used by the application to manipu-
late the widget (e.g., change its value) and by the toolkit to
inform the application of any user interactions with the wid-
get. The name is also used to refer to the widget in the com-
munications protocol.

Table 1 shows a list of the widgets supported by Jupiter.
These are mostly the conventional set from other window-
ing toolkits. The Typeln widget is for single line text entry.
The TextEdit widget is for editing larger (plain text) docu-
ments. The StrokeEdit widget is a graphical display and
interaction widget, similar to EZD [2] or Tk’s canvas widget
[18]. The VideoPane and AudioHighlight widgets provide
support for audio/video communications.

Each widget type exports a set of operations to the applica-
tion. For example, the TextList widget, which allows a user
to select from a list of text items, supports operations for
changing the list of items and for setting which item is cur-
rently selected. Widgets with small values, such as Booleans
and Numerics, support setting that value. Widgets with com-
plex value types, such as the TextEdit and StrokeEdit wid-
gets, supply operations for incremental update.

In addition, each widget type supplies a set of event notifica-
tions, most of which are a result of user interactions. Buttons
notify the application when they have been activated by the
user. Numerics do so when the user chooses a new value for
them. The StrokeEdit widget has a number of user interac-
tion modes, allowing the user to click on existing strokes, or
add new ones. When any widget event occurs, a predeter-
mined application routine is invoked with information about
the event.
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Jupiter applications are sharable, with the toolkit automati-
cally maintaining identical widget values for each partici-
pating user. Each change made by a user is reported to the
application and automatically propagated to the other users.

4 THE CLIENT-SERVER INTERFACE

Jupiter’s users run the client on their local workstation. It
makes a TCP connection to the server, running on a central
machine. The client program is assumed to evolve slowly,
with users obtaining a new one primarily when major proto-
col changes occur. Currently, implementations for the client
exist for several Unix platforms, using the Tcl/Tk toolkit
[18], and for Microsoft Windows, using the native Windows
programming environment.

The client-server protocol for Jupiter largely parallels the
programmer’s interface; most calls by applications result in
messages to the client, and most client messages generate
event notifications to the application. The protocol is
designed to use one-way messages, not requiring immediate
replies, whenever possible.

When a window is created, the server sends the S-expres-
sion describing the window to the client, which creates the
corresponding window.

After the window is created, updates to widget values can
originate from either the client or server. Updates to simple
widgets, such as Numerics and Booleans, include the entire
widget value. For user-originated changes, low-level mouse
and keystroke interactions are filtered out. For example, the
Numeric widget does not send intermediate values while the
slider is being moved, but waits until the mouse button is
released to send the final widget value.

More complex widgets, such as TextEdits and StrokeEdits,
use incremental state update messages. For TextEdits, a gen-
eral “replace this region of text with this value” message
suffices. StrokeEdits use a more complex protocol, shown in
Table 2.

Both client and server maintain a full copy of each widget’s
value. The client copy allows user changes to be reflected
immediately in the window, before they are processed by the
server. The server’s copy is used to coordinate updates gen-
erated by the various clients sharing the widget. In addition,
the server’s copy provides quick access for applications;
they do not incur round-trip delays for fetching the values of
widgets in order to do computations.

5 THE TWO-WAY SYNCHRONIZATION PROTOCOL

As mentioned earlier, optimistic concurrency control allows
clients to change widget values without having to wait for a
server interaction. If either the client or the server initiates a
change to a widget, the change is immediately applied
locally and a notification is sent to the other party. When
messages cross on the wire, each receiver fixes up the
incoming message so that it makes sense relative to the
receiver’s current state. The algorithm we describe guaran-
tees that these fixups will suffice, that the client and server
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Server Operations

create stroke, delete stroke

move stroke
set stroke attributes

set mode

set creation attributes

change the set of graphic
items being displayed

move an existing stroke
change color, etc. of an
existing stroke

set a user interaction mode,
allowing local creation or
deletion of strokes

set attributes for strokes cre-
ated by the user

Client Operations

hit down, hit up

sweep down, sweep drag,
sweep up

create stroke, delete stroke

report simple mouse hits of
existing strokes

report strokes hit by a sweep
operation that potentially
passes through several
strokes

reports user-initiated cre-
ations and deletions

Table 2: Operations available on StrokeEdit widgets

client

“ABCDE”

del 4

“ABCE”

“ACE”

server

“ABCDE”

del 2

“ACDE”

“ACDH

Figure 3: An example of an update conflict. The
client has deleted the fourth character, “D”, while the
server has deleted the second one, “B”. Without
concurrency control, the client and server wind up
with different final values. The fix is to have the
server transform the client’'s message into “del 3” so
that both client and server get the same result.

will always agree on the widget value when all messages
have been received and processed.

Unlike other groupware systems, Jupiter does not use the
synchronization protocol directly between the clients.
Instead, each client synchronizes with the server, the server
serializes all changes and echoes changes made by one cli-
ent to all others that are sharing the widget. This lets us
achieve n-way synchronization by running independent
two-party synchronization protocols on each client-server
link.

Figure 3 shows an example of two messages for a single
TextEdit widget that cross. If the messages are not trans-
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Figure 4: The state space the client and server
traverse while processing messages. Each node is
labelled with the number of client and server
messages processed when in that state. A conflict
has occurred starting from the state 1,1.

formed on receipt, the client and server wind up with differ-
ent final values for the widget. Since the client intended to
delete the “D” in the original string, its message must be
fixed up to read “delete 3” when the server detects the con-
flict.

The general tool for handling conflicting messages is a func-
tion, xform, that maps a pair of messages to the fixed up ver-
sions. We write
xform(c, s) = {c’, s’}
where ¢ and s are the original client and server messages.
The messages ¢’ and s’ must have the property that if the cli-
ent applies ¢ followed by s’, and the server applies s fol-
lowed by c¢’, then the client and server will wind up in the
same final state.

Of course, there are many possible functions that have this
property. For example, the function xform(c, s) = {delete
everything, delete everything} would satisfy our ordering
property, but would probably not satisfy many users! In gen-
eral, the transforms should try to find some “reasonable”
way to combine the two operations into a final effect. For
our delete example, this is easy to do:
xform(del x, del y) =

{del x-1,del y} if x>y

{del x,del y-1} if x <y

{no-op, no-op} if x =y
That is, we modify the later index in the document to
account for the earlier deletion. Other pairs of operations
present more difficulties; Section 7 talks about the issues in
designing transformations in more detail.

In describing the full protocol, it is helpful to picture the
state space that the client and server pass through as they
process messages. Figure 4 shows an example. Each state is
labelled with the number of messages from the client and
server that have been processed to that point. For example,
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20 1.1 0,2
2,1 1,2
(a)
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0,0
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Figure 5: In this example, the server generates two
messages, s1 and s2, that conflict with the client
message c. In order to process s2, the client must
compute ¢’, even though it will never execute it.

if the client is in the state (2,3), it has generated and pro-
cessed two messages of its own, and has received and pro-
cessed three from the server.

As each message is processed, the client or server moves
down though the state space. If they process messages in the
same order (that is, there are no conflicts), then they will
take the same path. If there is a conflict, then the paths will
diverge, as shown in the diagram. The client and server
moved to the state (1,1) together by first processing a client
message, and then a server message. At that point, the client
and server processed different messages, moving to the
states (2,1) and (1,2), respectively. They each received and
processed the other’s message using the xform function to
move to state (2,2). Then the server generated another mes-
sage, sending it and the client to (2,3).

The protocol labels each message with the state the sender
was in just before the message was generated. The concur-
rency-control algorithm uses these labels to detect conflicts,
and the xform function to resolve them. The algorithm guar-
antees that, no matter how far the client and server diverge
in state space, when they do reach the same state, they will
have identical values for all their widgets.

The xform function takes a pair of client and server mes-
sages that were generated from the same starting state and
returns transformed messages that allow the client and
server to reach the same final state. As long as the server and
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int myMsgs = 0; /* number of messages generated */
int otherMsgs = 0; /* number of messages received */
queue outgoing = {};

Generate(op) {
apply op locally;
send(op, myMsgs, otherMsgs);
add (op, myMsgs) to outgoing;
myMsgs = myMsgs + 1;

}

Receive(msg) {
/* Discard acknowledged messages. */
for m in (outgoing) {
if (m.myMsgs < msg.otherMsgs)
remove m from outgoing
}
/* ASSERT msg.myMsgs == otherMsgs. */
foriin [1..length(outgoing)] {
/* Transform new message and the ones in
the queue. */
{msg, outgoing][i]} = xform(msg, outgoing[i]);
}
apply msg.op locally;
otherMsgs = otherMsgs + 1;
}

Figure 6: The algorithm used by client and server to
deal with conflicting messages. The pair (myMsgs,
otherMsgs) corresponds to the state from Figure 4.

client diverge by only one step, we can use the xform func-
tion directly. If they diverge further, however, the situation
is more complex. Consider Figure5a. In this case, the client
has executed ¢ and receives the conflicting message s/ from
the server. It uses the xform function to compute s/’ to get to
the state (1,1). The server then generates message s2 from
the state (0,1), indicating that it still hasn’t processed c.
What should the client do? It can’t use xform(c, s2) because
c and s2 were not generated from the same starting state. For
example, if c is “del 4,” s1 is “del 1,” and s2 is “del 3,” then
the correct transform for s2 is “no-op,” but xform(c, s2) is
“del 3.7

The solution is depicted in Figure 5b. When the client com-
putes s/’ it must also remember ¢’, the other returned value
from xform. This represents a hypothetical message that the
client could have generated to move from the state (0,1) to
(1,1). When s2 arrives, the client can use ¢’ to compute
xform(c’, s2) ={c”,s2’}

It executes 52’ to get to the state (1,2). If the server has pro-
cessed the client’s message, it will be in the state (1,2) as
well. If not, its next message will originate from (0,3), so the
client saves ¢” just in case.

We are now ready to examine the full algorithm, shown in
Figure 6. We describe it from the client’s perspective, but
the server’s actions are identical. The algorithm maintains
the invariant shown in Figure 7. The server was last known
to be in the state (x, y). Since then, the client has sent k mes-
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Figure 7: Whenever our algorithm is not processing a
message, the situation shown above holds (as seen
by the client). The server was last known to be in the
state (x, y). We are in the state (x+k, y) and have
saved all the messages necessary to get from (x, y)
to (x+k, y). The next server message must originate
from some state along this path.

sages, leaving it in the state (x+k, y). These messages are
kept in the outgoing queue. In the code, myMsgs is x+k, and
otherMsgs is y.

Sending a message while maintaining this invariant is easy:
just apply the operation locally to move to (x+k+1, y), trans-
mit it to the server, and then append the message to the out-
going message queue.

For reception, we know that the next incoming server mes-
sage must originate from one of the states between (x, y) and
(x+k, y) inclusive; that is, the server will have processed
some arbitrary number of those k client messages. Assume
that it comes from state (x+i, y), taking the server to (x+i,
y+1). First, discard the saved messages that take us from (x,
y) to (x+i, y), as they are no longer needed. Next, run the
incoming message through the transformer with respect to
each of the saved messages. The final result will be a mes-
sage that takes us from (x+k, y) to (x+k, y+1), which we
apply locally. While doing this, save the transformed ver-
sion of each saved message. When we are done, we have a
sequence of saved messages that takes us from the last
known server state, (x+i, y+1), to our current state, (x+k,
y+1). We have thus restored the invariant and are ready for
the next incoming message.

Some fine points

In our system, messages must be saved until they are
acknowledged by the other party, since they may be needed
in order to fix up incoming messages. Normally, these
acknowledgments are piggy-backed on traffic going the
other way. However, it is possible for the traffic to a window
to be one-sided (e.g., for a status display window being peri-
odically updated). Therefore, each side must periodically
generate explicit acknowledgments (i.e. no-op messages) to
prevent the outgoing queues from growing forever.
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server
window window
A B

client

B(0.0) lock
— a0
Ao
W — ]

Figure 8: Sequence numbers must be assigned at a
grain at least as fine as the locking granularity of the
toolkit. Otherwise, an incoming message waiting for a
lock on one window might be incorrectly
acknowledged by the reply to a message for another
window.

An important consideration is the interaction of message
numbering with locking. The toolkit requires that applica-
tions hold a per-window lock whenever they are examining
or changing widget values for that window. If a message
arrives from a client while this lock is held, the message
cannot be processed until the lock is released.

However, messages must not be acknowledged before they
are processed. Figure 8 illustrates this problem. The client
sends a message to window B, which has been locked by
application code in the server. As a result, processing of that
message is deferred until the lock is released. Meanwhile,
the client sends a message to the unlocked window A, which
generates a reply that acknowledges both of the client’s
messages. While the window is locked, the application gen-
erates a message for B, which also claims to have been gen-
erated after both client messages. However, the client’s first
message actually hasn’t been processed yet. The sequence
numbers will fool both client and server into assuming the
messages don’t conflict when in fact they do.

This example shows that locks affecting any message must
delay processing of all messages with higher sequence num-
bers. To avoid unnecessary delays, message counters should
be maintained at a granularity at least as fine as the locking
granularity the applications use. Our system happens to use
window locking, so our counters are maintained on a per-
window basis. We could have used per-widget counters, but
that would have reduced the opportunity for piggy-backed
acknowledgments.

Comparison to dOPT

Our concurrency algorithm is similar to the dOPT algorithm
used in Grove. Our xform function corresponds to the trans-
formation matrix T in their system. In addition to the two
operations being transformed, T also requires two priorities
for tie-breaking. This is because T might be applied to oper-
ations for any two sites in the system. Because xform is
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/* apply “msg” received from “client” */
apply msg.op to local copy of widget;
for (c in client list for this window) {
if (c !=client)
Send(c, msg);
}

Figure 9: The algorithm used by the server to
maintain consistency between clients. This code
replaces the line “apply msg.op locally” in Figure 6.

always applied to operations between a client and the server,
it can have the tie-breaking rules built-in, simplifying the
specification of the transformations.

The dOPT algorithm also has code for saving messages that
arrived out of order from a site, then applying them when
earlier messages had been processed. Because we do not
multicast updates, we can assume a transport layer that
delivers messages in order, such as TCP, and omit the reor-
dering code.

Finally, Jupiter’s algorithm fixes a problem with dOPT.
When sites diverge by more than one step in the state space,
dOPT does not transform saved messages when processing
incoming messages (the situation shown in Figure 5).
Unfortunately, simply transforming saved messages does
not work for the n-way case, since the next message can
come from a third site that is in an inconvenient message
state. Since we handle n-way consistency differently, this
problem does not arise in our algorithm.

6 GLOBAL CONSISTENCY

The algorithm described in the previous section allows two
parties to maintain synchronized widget state. By using a
central coordinator, it is easy to extend it to synchronize any
number of parties sharing a widget. To do this, the line
“apply msg.op locally” from Figure 6 is implemented on the
server as shown in Figure 9. As a message arrives from a
client, it is sent to all the other clients as well as being
applied to the local copy of widget value.

Essentially, the optimistic algorithm hides the asynchrony of
the clients from the server. The pair-wise optimistic algo-
rithm makes each client appear to the server to be operating
completely synchronously; whenever a client generates a
change, it appears that the client has processed all server
messages sent so far. If all the clients are synchronous, then
the simple algorithm of echoing changes from one to the
others works.

It may be easier to think in terms of the two-party guaran-
tees. As long as the server sends to a client every change it
applies that the client did not generate, then the two-party
algorithm guarantees the client and server will have the
same value for the widgets at quiescence. Since each of the
clients’ values is equal to the server’s value, they must be
equal to each other as well.
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7 CHOOSING TRANSFORMATION FUNCTIONS

An important part of using the optimistic protocol is choos-
ing transformations for the pairs of widget operations.
While the transformation to use is obvious for some pairs,
conflicting requirements in the system make other choices
more difficult. This section discusses these concerns, and
how we balanced them in Jupiter.

At first, the combinatorics of the problem can seem over-
whelming. Jupiter supports 19 client and 24 server messages
that directly operate on individual widgets, yielding 456
potential pairs to consider. Fortunately, most of these combi-
nations are uninteresting. Messages can only be in conflict if
they are trying to update the same widget, so any messages
from different widget types need not be transformed.

The messages for window creation and deletion could cause
conflicts if window ids were reused, since one message
might refer to an old instance of a window, while another
referred to a new instance with the same id. If the server is
careful to avoid reusing window ids, we can avoid these
problems, and need only consider widget-specific messages.

By considering only conflicts within a widget type, we are
left with 65 cases. Of these, 42 are from the StrokeEdit wid-
get, where a number of client messages report user selection
of strokes. These messages are similar enough to be consid-
ered at once, reducing the number of cases for StrokeEdits
to 18 and for all of Jupiter to 41.

To give a flavor for how the transformations work, we show
a few examples. Table 3 shows some of the client and server
operations for several widgets, and Table 2 from earlier in
the paper gives the list for the StrokeEdit widget.

Widget Client messages Server messages
Numeric SetValue SetValue
TextList SetValue SetValue

Activate Replaceltems
TextEdit Replace Replace

Table 3: Messages defined for selected Jupiter
widgets.

Simple widgets, like Numeric sliders and Booleans, have
small values that are always sent in their entirety. For these,
we designate one of server or client to be the “winner,” giv-
ing
xform(SetValue(v1), SetValue(v2))
= {no-op, SetValue(v2)}

The “losing” message is simply discarded.

For TextLists, transformations for SetValue vs. Replace-
Items and Activate vs. Replaceltems discard the user action.
Each of these client messages is returning the index in the
list of text of the currently selected item. However, the
application has changed this list, and most likely cannot
make sense of this obsolete index. In this case, we believe
that the user will usually be able to identify the problem and
recover; the application is less likely to be that smart.
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The Replace operation for TextEdits deletes a region of text
and inserts a string to replace it. For Replace vs. Replace,
the transformation produces a final state that (a) has
removed all the text requested by either Replace, (b) has
inserted the text requested by each, sorted by the starting
points of the delete regions. We arbitrarily chose to put
server text first if both try to insert at the same spot.

One interesting subcase occurs when one Replace inserts
text into the middle of the region of text being deleted by the
other. We choose to insert the text anyway, since we want to
preserve the user’s input if possible. This is true even if the
inserted text is coming from the server, since it may be text
another user typed that is being echoed to this window.

However, the transformed Replace in this case has to delete
two regions, the one before the inserted text, and one after.
There is no “delete disjoint regions” operation for TextEdits,
so we split the operation into two messages, with the second
one implicitly generated from a fractional state number. In
general, one has to be careful that a transformation doesn’t
produce new operations not in the original set defined for a
widget. This was the only time we had this problem, and
message splitting let us finesse the problem.

The StrokeEdit widget’s input modes cause particular prob-
lems in choosing transformations. For example, two of the
modes a StrokeEdit can be placed in allow users to draw
new lines (“line mode”) and to click with the mouse to gen-
erate reports about which strokes were hit (“hit mode”). If
an application switches a StrokeEdit from line mode to hit
mode, then it arguably doesn’t expect to receive notifica-
tions of new lines created by the user. On the other hand, we
don’t want to discard the user’s effort, either. Currently, we
keep the strokes, but this decision comes under discussion
from time to time.

To summarize, the guidelines we tried to follow were:

® The set of operations should be closed under the transfor-
mation rules.

® Try not to discard user input.
* Try to avoid confusing application code.
While we could not always satisfy all these at once, we were

generally happy with the compromises we were able to
reach.

8 CONCLUSIONS

The Jupiter window toolkit is client-platform independent
and provides fast response to low-level user interactions
even over low-bandwidth, high-latency communication
channels. It achieves these goals through the use of a high
level of abstraction on the wire: Jupiter clients and servers
communicate solely in terms of high-level widgets and user
events.

To solve the distributed-state synchronization problems that
this design entails, Jupiter uses an optimistic algorithm with
widget-type-specific transformations to recover from server/
client conflicts. Jupiter’s combination of a centralized archi-
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tecture and optimistic concurrency control gives us the
advantages of both: easy serializability of concurrent update
streams and fast interactive response.

Our concurrency-control algorithm is a variant of one devel-

oped by Ellis and Gibbs for their Grove text editor. Our con-

tributions include

® significant simplification and improvement due to our
added assumption of an ordered, reliable communications
channel between exactly two participants,

® a mechanism for doing full n-way sharing of widget val-
ues using the pair-wise algorithm, and

® a discussion of some of the issues involved in designing
the associated transformation functions for pairs of con-
flicting messages.
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