
Operational Transformation

Robert Krahn

Software Architecture Group
Hasso Plattner Institut
Potsdam, Germany

robert.krahn@student.hpi.uni-potsdam.de

Abstract. Multi-user applications allow participants to cooperatively
author shared documents in real-time. The document state in these ap-
plications is distributed across several application instances and must be
synchronized in order to ensure consistency for all participants. Since net-
work latency can be high and human users demand immediate feedback,
synchronization strategies must take these requirements into account.
In this paper we describe the Operational Transformation framework.
This framework synchronizes operations between application instances
optimistically and addresses the requirements typically occurring in a
multi-user application. Furthermore, we describe how a multi-user Web
chat application can be implemented using the Operational Transforma-
tion approach.

1 Introduction

Multi-user applications are distributed systems in which two or more users are
working in real-time on a shared document [1]. We call the distributed parts
of the multi-user system application instances. Typically, there exists one appli-
cation instance per user and, if a central-server exists, there runs at least one
application instance on the server.

Generally, the system state can be changed at any time in all application
instances. To allow users to work on the same state, the state of all application
instances has to be synchronized mutually. Because of efficiency reasons, only the
actions that lead to state changes (e.g. adding a character at a certain position
to a text) are used for synchronization. We call those actions operations. This
means, synchronization can be reduced to exchanging operations. If operations
happen concurrently at at least two application instances then a conflict occurs.

Figure 1(a) shows non-conflicting operations on the text "hallo". At appli-
cation instance A the fourth character is deleted. After the operation is applied
locally it is send to application instance B where it is also applied, leading to
a consistent1 state in all application instances. Another operation is generated
and applied at B and send to and applied at A. In this example the applica-
tion instance states could be successfully synchronized by simply sending and
applying operations.
1 Consistency is defined in section 3.



Now consider figure 1(b). Here both deletions happen concurrently, i.e. the
deletion at A is generated and applied before the deletion operation from B
arrives and deletion at B is generated and applied before the deletion generated
at A arrives. For synchronization the operations are now send to and applied at
the application instances. The final text state at A and B differs and the users
cannot work consistently on the same document any longer. A more sophisticated
synchronization strategy is required.

(a) (b)

Fig. 1: Non-conflicting and conflicting text operations.

To fulfill the real-time requirement, multi-user applications require fine-grained
operations. They also have to be responsive because usually human users interact
with them.

Summing up, multi-user applications have to fulfill several requirements:

– Fine granularity of sharing,
– two or more participants,
– participants can concurrently modify data with a consistent outcome,
– the application should be highly interactive and response times should be

minimized.

In section 2 we describe how systems that fulfill the presented requirements
can be classified. Based on that classification we present the concurrency control
approach of the Operational Transformation framework in section 3. In section
4 we introduce a Web chat application implemented using Operational transfor-
mations. Section 5 discusses the related work and in section 6 we give a summary
and an outlook.

2 Concurrency Control Approaches

There exist several strategies to solve the presented problems. On the one hand,
these approaches differ on whether they synchronize optimistically or pessimisti-



cally [2]. Pessimistic approaches require network communication with other in-
stances. This means that the operation is send synchronous to other instances
and only applied at the issuing instance after a response from other instances
arrives. A multi-user system using this approach is Croquet [3]. In Croquet each
distributed event is temporarily ordered. This approach allows to execute the
events in the same order across all Croquet instances. The drawback of pes-
simistic algorithms is that a complete network round-trip has to be done. In
low-latency networks this can result in a delayed user response, leading to a less
interactive system.

Systems using an optimistic synchronization strategy strategies on the other
hand apply operations instantly at the issuing site. If a conflict occurs because
another application instance had applied an operation B that was note present
at the issuing instance at the time that operation A was created and applied then
these operations have to be transformed in order to reach the same state across
all instances. This approach requires that all operations must be transformable.
User response times are not dependent of network delay. Therefore optimistic
synchronization has an advantage in environments with high network latency.

Concurrency control can also be distinguished on whether they have a cen-
tral server or a fully distributed peer-to-peer network. In peer-to-peer networks
instances send and receive operations to and from an arbitrary number of other
instances. This means that they have to be able to synchronize operations re-
ceived from multiple sources.

Concurrency control systems using a central server, however, need only to
synchronize the state between server and each instance. Only the server has to
maintain multiple connections. Multi-user applications using a central server can
still have an arbitrary number of participants. Additionally, the server can keep
the application state when no client is connected, keeping the system always
"alive".

3 Operational Transformation

Operational Transformation (OT) is a conceptual framework for concurrency
control [1, 4, 5]. It is optimistic and can be implemented with a peer-to-peer or
client-server architecture. The fundamental responsibilities of the OT framework
can be separated into two tasks: How and when operations are applied to ap-
plication instances and how operations are modified at the application instances
to ensure the consistency of the shared state across all application instances.
Consistency in this context means [1, 6]:

– Eventually the state of all instances must converge. If the same operations are
applied to the application instances their state must be eventually identical.

– The intention of an operation must be maintained. Depending on the seman-
tic of the operation, the modified operation should not confuse the applica-
tion user. For example, if the shared state is a text and a conflict between
two text operations occurs then a solution would be to delete the whole text.



As long as this is done at all application instances the convergence require-
ment would be satisfied. However, this solution would not incorporate the
intention of the user.

– The causality of operations should be preserved. If an operation causally
precedes another operation2, then at each application instance the execution
of the first operation (respectively its transformation) happens before the
execution of second operation.

In the following we will explain what an operation transformation is, what
properties is must have, and how operations are transformed across application
instances to ensure consistency.

3.1 Transformations

We presented a conflicting text operation in the example shown in Figure 1(b).
The conflict occurred because operations are applied optimistically at the gen-
erating instance and synchronization is done afterwards.

How is this conflict solved using transformations? Figure 2 shows the solution.
When the deletion del(2) generated at application instance B is received by
application instance A, it is identified as a conflicting operation. The conflict
exists between del(2) and del(4) because the state was synchronized before those
operations were generated. For application instance A del(2) is transformed,
however, since del(4) should have no impact on a deletion before that position
the transformation result is the same del(2). It is applied at application instance
A. At application instance B we have to transform the received del(4) operation
so that the resulting state is as if del(4) was applied before del(2). This means
application instance B transforms del(4) and gets del(3) as a result which is then
applied. Both application instances now have the same state.

Generally a transformation function transform(a, b) accepts two conflicting
operations a, b as input and produces two transformed operations a′, b′ so that
a ◦ b′ = a′ ◦ b. This property must be fulfilled by all transformation functions
[1]3.

In the example both application instances execute transform(del(4), del(2))
and get del(2), del(3). Only one result is applied, the other one is stored to resolve
further conflicts as explained in section 3.2.

A general deletion transformation function could have the implementation
shown in listing 1.1.

transform(del(i), del(j)):
if i > j return del(i-1), del(j)
if i < 1 return del(i), del(j-1)
return no-op, no-op

Listing 1.1: Transformation function for deletion operations

2 This means that the generation and execution of the first operation happened before
the second. For a formal definition and detailed discussion see [6]. The happened-
before relation is defined in [7].

3 x ◦ y means first operation x and then operation y is applied.



Fig. 2: Resolution of the conflict shown in figure 1(b).

Depending on the application, transformation for other operations have to be
implemented. For a text editor, for example. the add operation is necessary and if
also rich text is supported then also operations for manipulating text attributes
are required. Transformations might also be necessary between different kinds of
operations. For a text editor not only transform(add, add) must be implemented
but also transform(add, del) and transform(del, add). Thus, in the worst case,
an application with n operations requires n2 transformations. However, in real
applications the number of necessary transformations is lower because not all
concurrent operations create a conflict [2].

As shown in the example above. the Operational Transformation approach is
usually used to solve operation conflicts automatically. However, it also possible
to implement a manual conflict resolution mechanism as it is done in the CoWord
project [8, 5] for a few operations.

3.2 Merging Multiple Operations

The general control flow in OT is the following. An operation created by an
application instance is first applied locally at that instance and then send to other
application instances4. At the other instances the state change is transformed
using a transformation function so that other changes that were created at that
instance concurrently are taken into account. The transformed changes are then
applied at the other application instances.

Until now we have only considered the case of two conflicting operations. How
can the state made consistent if more then one operation is made concurrently?
See figure 3 for an example. The state transitions of a text for two application
instances A (orange) and B (blue) is shown. Both start with an empty text. The
numbers below the text depict the number of operations generated at A and
generated at B. We call them version tuple.

4 Or it is send to the server. The server then transforms and broadcasts the change to
other application instances.



Fig. 3: The state space application instance A (orange) and B (blue) traverse
when merging multiple operations.

First, A adds the character ’f’. This operation is submitted to B and applied
there. Both are in the state (′f ′, 1, 0). Now A adds two more characters and
ends up in the state (′foo′, 3, 0). B does not receive these two new operations
(for example because the network connection failed) and ends up in the state
(′f bar′, 1, 4). This means the state in A and B diverged by two, respectively 4,
operations. To end up at a consistent state OT will merge all operations.

Assume that A receives the first operation of B add(′ ′, 2), i.e. add space at
position 2. The version tuple of the operation is 1, 1. First, the conflicting opera-
tion is determined. It is add(′o′, 2) because the last known common state had the
version tuple 1, 0. Then both operations are transformed: transform(add(′o′, 2),
add(′ ′, 2)) = add(′o′, 2), add(′ ′, 3). The result add(′ ′, 3) is not applied at A but
used as input for the next transformation: transform(add(′o′, 3), add(′ ′, 3)) =
add(′o′, 3), add(′ ′, 4). Now add(′ ′, 4) can be applied at A to end up in state
(′foo ′, 3, 1).

During that process the transformations results not applied at A (add(′o′, 2)
and add(′o′, 3)) need to be stored. They are used to resolve the next conflict.
The next operations A receives is add(′b′, 3). The transformations transform(



add(′o′, 2), add(′b′, 3)) = add(′o′, 2), add(′b′, 4) and transform(add(′o′, 3),
add(′b′, 4)) = add(′o′, 3), add(′b′, 5) are computed and add(′b′, 5) is applied at A.
The intermediate results add(′o′, 2) and add(′o′, 3) are stored again to resolve the
next conflict. Generally when A is in state (sA, x + i, y) and last known state of
B is (sB , x, y), A needs to save i operations to successfully end up at a consistent
state.

This process is done for every operation that A receives from B. B transforms
the two operations from A (add(′o′, 2) and add(′o′, 3)) analogously. Thus, both
application instances end up in the state (′foo bar′, 3, 4).

The complete description of the algorithm used to control the transformations
is presented in [2].

Note that we have assumed that the operations received from remote appli-
cation instance are ordered by their generation time. OT does not require such
ordering since it is possible to order operations using their version tuple.

4 Using Operational Transformations in Web-based
Multi-user Applications

We implemented a Web chat tool5 that allows users to simultaneously modify
a single text. Users can login with a Web browser and then immediately start
interacting with other users online. The chat currently only supports basic text
operations: Add, Delete, and Cursor move operations are supported. Extending
the system with additional operations is possible and only requires implement-
ing the operation classes and their transformations on client and server. The
fundamental control flow of the application is the following. A user logs in and
receives the current application state from the server. He can then make inputs
(add and delete text). The inputs are events send to the text element in the
browser. They are not only processed locally but each event is also converted
to an operation object capturing. This operation is then send to the server for
broadcasting it to other users. We are using a Comet-like communication scheme
[9] with a basic protocol for broadcasting and receiving messages to and from
channels. The broadcasting scheme was inspired by the Bayeux protocol [10].

How operations are interchanged and transformed is shown in figure 4. In
the figure only two application instances A and B are connected to the server
for simplicity, however, it is possible that an arbitrary number of application
instances can be connected to the server. When A generates an operation it is
applied locally and then send to the server. The server also keeps track of the
application state of A in a separate state space called A’. The operation received
from A is transformed and applied there using the approach described in section
3.2. The transformed operation is also send to the main server state (used for
globally tracking the application state and for initially synchronizing new users)
and to all state spaces from other connected clients. In the example there is only
the state space B’. Again, the operation is transformed and applied there. The

5 http://lively-kernel.org/web-collab/webchatBox.xhtml



resulting transformed operation is then send to B where it is transformed and
applied once again. All transformation steps are necessary because concurrent
operations can occur at any time in all application instances.

Fig. 4: Synchronization of operations.

5 Related Work

Operational Transformation is used in various editor applications. The Jupiter
system [2] is a windowing system that uses OT for synchronizing text state but
is also capable of synchronizing operations for graphical objects like a widget for
drawing. The OT implementation used for the Web chat is closely related to the
one presented in the Jupiter paper.

CoWord, CoPowerpoint, and CoMaya [5, 8] use OT to enable multi-user sup-
port in existing editor applications including synchronization support for oper-
ations on rich text, graphical widgets, and even 3D structures.

The text editor SubEthaEdit is a collaborative real-time editor designed for
Mac OS X [11]. It uses OT for synchronizing text operations. SubEthaEdit
supports only plain text modifications.

Google Wave is a Web-based communication tool with the goal to merge
e-mail, instant messaging, wikis, and social network into one application [4]. In
Google Wave users can create and modify documents called Wavelets. Wavelets
contain rich text and other objects like embedded images and videos. Modifi-
cations of Wavelets are synchronized using OT. Google Wave extends the OT
approach of the Jupiter system to make it more scalable. For example, multiple
operations can be merged into one, making synchronization more efficient. Un-
like other OT systems, application instances in Google Wave use confirmation
messages from the server when the server has successfully processed operations
send by the application instance. New operations are only send to the server



when a confirmation was received. This allows to simplify the server logic. Un-
like the Web chat tool presented here, Google Wave only has to manage one
state space at the server.

6 Summary

In this paper we presented the concept of Operational Transformation. OT is
an approach to optimistically synchronize operations in a real-time multi-user
system. OT transforms conflicting operations so that the execution of the trans-
formed operations leads to a consistent state across all application instances.
Application instances can be "offline" for an arbitrary amount of time. OT en-
sures that all changes happened at other application instances are iteratively
transformed.

We furthermore presented an implementation of a Web chat tool that syn-
chronizes its state using an OT implementation similar to the Jupiter system
[2].

We plan to extend the system so that the chat-like features can be used
to annotate worlds in the Lively Kernel [12]. This live documentation would
work similar to wavelets presented in Google Wave [4]. We then plan to extend
this system to allow sharing of Lively Kernel objects ("objects drawer"). In the
end, we want multi-user support for modifying the full graphical environment of
the Lively Kernel. For that we may base our implementation on the operations
introduced by Webcards [13]. Webcards already allowed multi-user interaction
based on these operations, however, no conflict resolution was implemented.

References

1. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.
18 (1989) 399–407

2. Nichols, D.A., Curtis, P., Dixon, M., Lamping, J.: High-latency, Low-bandwidth
Windowing in the Jupiter Collaboration System. In: UIST ’95: Proceedings of the
8th annual ACM symposium on User interface and software technology, New York,
NY, USA, ACM (1995) 111–120

3. Smith, D.A., Kay, A., Raab, A., Reed, D.P.: Croquet - a collaboration system
architecture. Creating, Connecting and Collaborating through Computing, Inter-
national Conference on 0 (2003) 2

4. Wang, D., Mah, A.: Google wave operational transformation.
http://www.waveprotocol.org/whitepapers/operational-transform (2009)

5. Sun, C.: Designing Real-time Collaborative Editing Systems. Google TechTalk
http://www.youtube.com/watch?v=84zqbXUQIHc (2008)

6. Sun, C., Ellis, C.: Operational transformation in real-time group rditors: Issues,
algorithms, and achievements. In: CSCW ’98: Proceedings of the 1998 ACM con-
ference on Computer supported cooperative work, New York, NY, USA, ACM
(1998) 59–68

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21 (1978) 558–565



8. Xia, S., Sun, D., Sun, C., Chen, D., Shen, H.: Leveraging single-user applications
for multi-user collaboration: The coword approach. In: CSCW ’04: Proceedings of
the 2004 ACM conference on Computer supported cooperative work, New York,
NY, USA, ACM (2004) 162–171

9. Bozdag, E., Mesbah, A., van Deursen, A.: A comparison of push and pull techniques
for ajax. In: WSE ’07: Proceedings of the 2007 9th IEEE International Workshop
on Web Site Evolution, Washington, DC, USA, IEEE Computer Society (2007)
15–22

10. Russell, A., Wilkins, G., Davis, D.: Bayeux - a JSON Protocol for Publish/Sub-
scribe Event Delivery. http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.
html (2007) As of Dec 29, 2009.

11. TheCodingMonkeys: SubEthaEdit. http://www.subethaedit.net (2003) As of
Feb 10 2010.

12. Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, T.: The Lively Kernel
A Self-supporting System on a Web Page. In Hirschfeld, R., Rose, K., eds.: S3.
Volume 5146 of Lecture Notes in Computer Science., Springer (2008) 31–50

13. Dannert, J.: WebCards - Entwurf und Implementierung eines kollaborativen,
graphischen Web-Entwicklungssystems für Endanwender. Master’s thesis, Hasso
Plattner Institut (2009)


