
Advanced Object Explorer for the Lively Kernel

Alexander Lüders, Richard Metzler, Kai Schlichting

Hasso-Plattner-Institut
Universität Potsdam

http://www.hpi.uni-potsdam.de/

Abstract. Building new applications of any kind requires standard de-
velopment tools, e.g. debuggers or object explorers. The Lively Kernel,
an experimental web programming environment written in JavaScript
and running in the web browser, lacks some important tools that are
crucial to developers.
To fill this gap we implemented an object explorer for Lively that empow-
ers developers browsing object hierarchies and inspecting objects. This
paper primarily presents and discusses JavaScript metaprogramming fea-
tures and techniques to dynamically introspect and intercede objects on
runtime. A design for an object explorer is proposed that utilizes these
language features.

1 Introduction

Lively was originally developed by Sun Microsystems Laboratories and is now
available as MIT licensed open source software [3]. It is heavily influenced by
Squeak, supporting both desktop-style applications with rich graphics and the
ability to modify these applications on the fly by functioning as an integrated
development environment (IDE). In Lively every graphical manipulable object
is a morph, the most top-level morphs are called worlds. Morphs have properties
that define their look, behavior and relations with other objects and are part of
a morph hierarchy.

While Lively provides a quite acceptable number of development tools for
working on Lively based applications, developers miss the ability to browse ob-
ject hierarchies and the morph/ submorph relations in particular. For this reason,
an object explorer should be able to display these relations and the resulting hi-
erarchy. The immediate reflection of changes would be essential to the usefulness
of the specified tool as a single snapshot would be outdated very fast. Also it
should be possible that an object explorer instance can explore itself (self refer-
enced browsing).

On the basis of these requirements, this paper discusses an object explorer
design and implementation with the help of JavaScript’s metaprogramming fea-
tures: In section 2, we provide a short introduction of JavaScript objects and
inheritance and show the differences in Lively. The following section describes
the architecture of the object explorer while sections 4 and 5 show how introspec-
tion and intercession techniques can be used to enable object browsing and live

http://www.hpi.uni-potsdam.de/


2

updates. Benchmarks concerning memory and performance are given in section
6. The last section summarizes and concludes our work.

2 Metaprogramming in Javascript

Despite its name JavaScript is fundamental different from most other object-
oriented programming languages including Java. The major differences in JavaScript
are prototypal inheritance and the dynamic nature of objects that can be mod-
ified on runtime despite the lack of a meta object protocol.

As seen in listing 1.1 JavaScript objects are associative arrays that consist of
key/value pairs. Functions can be added to an object and called in the context
of that object. Changing the behaviour of objects at runtime is a feature that
would require an explicit meta object protocol in most of today’s programming
languages.

var book = { "title" : "Faust", "author" : "Goethe" };

book.wrote = function () {

return this.author + " wrote " + this.title ;}

keys(book); // ["title", "author", "wrote "]

Listing 1.1. JavaScript objects are associative arrays

In JavaScript functions are objects too. Functions may have attributes and
can be modified on runtime. Functions can also be used as constructors creating
new objects. Objects created through constructors inherit all properties from
the constructor’s prototype. [2] By adding new functions to the prototype it is
possible to add functionality to existing objects as shown in listing 1.2.

function Book(author , title) {

this.author = author; this.title = title; };

var hamlet = new Book("Shakespeare", "Hamlet");

Book.prototype.wrote = book.wrote; // reuse function

hamlet.wrote (); // "Shakespeare wrote Hamlet"

Listing 1.2. Constructors and prototypal inheritance

Lively additionally adds a more established style of inheritance - the class
based inheritance. It is introduced by means of metaprogramming techniques. A
small example demonstrates the feature in listing 1.3.

Object.subclass("Book", {

initialize: function(author , title){

this.author = author; this.title = title;

},

wrote: function () {...}



3

});

Book.subclass("DrawingBook", {});

var bookForChildren = new DrawingBook ();

Listing 1.3. Lively’s class based inheritance

3 Object Explorer Overview

The object explorer is implemented as a morph and thus easy to integrate into
the Lively Kernel. By simple right-clicking on a morph and selecting explore,
any morph can be browsed in the object explorer. It displays the properties of
the morph object in a tree view. Depending on the type of the property the
information displayed varies. Underneath the tree view there is a console view,
which is used to display or manipulate a function’s source. Besides the manip-
ulation of objects, the object explorer provides a few more options accessible
through the side menu in the upper right corner. Available options are expand-
ing/ collapsing all items, enabling/ disabling the morph view and displaying/
hiding functions. Some of the features may be only accessible in morph view
respectively the normal view.

3.1 Architecture

Fig. 1. UML class diagram of relevant object explorer classes

For separation of concerns we decided to apply the Model-View-Controller
design pattern. The ObjectExplorer class can be used to create instances of the
explorer and behaves in the MVC context as the controller : It builds up the
tree of objects (model) and create the interface components to display this tree
(view).



4

The view mainly consists of a tree view which is represented by the TreeMorph

component. It contains several morphs for displaying the single nodes. Therefore
the TreeNodeMorph is used which itself is composed of several other morphs again
(not displayed in the diagram). The model part is represented by ObjectExplorer

.TreeNode derived by TreeNode. The latter describes standard node functions like
expand, collapse, setText, getText etc. The former however fulfills the model
functionality, as it sets the text of the node according to the observed property.

Last but not least there remains the ObjectObserver component, which is re-
sponsible for observing an property by providing operations for registering/dereg-
istering callbacks for a property.

4 Exploring Objects (Introspection)

In the following sections the aspects of displaying and manipulating properties
will be covered. For each aspect the idea of the underlying JavaScript implemen-
tation will be discussed briefly.

4.1 Displaying properties

In order to display an object’s properties, it is essential to get a list of all the
properties the explored object holds. Therefor introspection is used. As already
mentioned in section 1.1 JavaScript objects are associative arrays. Capitalizing
this characteristic it is possible to receive the list of properties.

var printObjectProperties = function(obj){

for(var property in obj){

//show function source

if (typeof(obj[property ]) === ’function ’)

alert(obj[property ]);

}

}

Listing 1.4. Iterating over JavaScript object’s properties

In listing 1.4 the variable property holds the name of the current property.
This can be used to access the property itself. In the object explorer the property
name along with a literal description of the property’s value is displayed. The
description depends on the actual type of the property.

Using the keyword typeof we can determine the type which works as a dis-
criminator for building the description string. It returns one of the following
types: string, function, object, number, boolean, undefined. In the case of an
object the description should look similar to Java’s toString method which typ-
ically includes the name of the object and the properties with their respective
values. In order to achieve that we use the Object.inspect method. Internally
it calls the inspect method of the passed object if one exists. Anyway, for most
Lively Objects this should be the case. Otherwise it calls the toString of the



5

object. It turns out that the Object.inspect fits our need to provide a useful
literal description.

Displaying function source In more advanced usage scenarios it could be
useful to examine the source code of some functions of an object. Therefor we
introduced a console widget which is displayed underneath the tree view. By
clicking on a function in the tree view, the source is displayed in the console.
The underlying JavaScript implementation is fairly easy - (new Function(){alert

(’foo’);}).toString();.

Browsing morph hierarchy Assume you want to explore the graphical Lively
world. It consists of several morphs which themselve are composed of several
other morphs. Internally a Lively morph has an array submorphs which will con-
tain the morphs it is composed of. Of course, these submorphs may consist of
several submorphs again. In order to get a quick overview of a Lively world, it
is annoying to click through the entire submorphs array over and over. Hence we
introduced a domain specific view - the morph hierarchy.

In this view all properties except Lively morphs are hidden. The implemen-
tation basically filters all non-morph objects using the Lively introspection.

4.2 Manipulating properties

Besides the pure functionality of displaying properties, there may be an interest
in manipulating them too. Manipulation of properties is done using the object
explorer’s console. Here the this keyword refers to the explored object, e.g. this.
documentation = "A useless documentation." will change the documentation prop-
erty. To execute the statement, right-click it, select text-functions and afterwards
do-it.

It turned out that manipulating objects is quite a useful feature, even during
the development time of the object explorer itself. In order to provide such a fea-
ture we reused existing Lively functionality. The console is a Lively TextMorph
which supports the evaluation of entered text. It is often used to execute selected
text, which is refered to as Do-It functionality. Internally the provided text is
executed using JavaScript’s eval function. Thrown exceptions are displayed in
an TextMorph overlay. However, to manipulate the explored object, a binding
of the this keyword to the object itself was needed. A TextMorph defines a
DoItContext which is set to our explored object (see listing 1.5).

panel.textPane.innerMorph ().connectModel ({

model: {contextForEval: function (){return this.

objectToExplore }.bind(this)},

getDoitContext: ’contextForEval ’

});

Listing 1.5. Setting Do-It context



6

As functions are object properties, it is reasonable to make them changeable
too. Therefor select a function and change the source accordingly. Afterwards
right click the source and select save function source. The internal mechanism is
similar to the manipulation of properties as described above. Solely the evaluated
text has to be prefixed with the object path relative to the explored object,
e.g.this.fullbounds.intersects = <console_source>. The prefixing is invisible
to the user and is applied after the user selects save function source.

5 Live Updates (Intercession)

The previous section described how to display and browse a snapshot of object
hierarchies. To display the actual, not out-dated state of an object, the object
explorer has to look for changes on objects. Since setting properties of an object
is not usually done via a setter function, the challenge here is to hook into an
object so that changes can be recorded. For this purpose, this section discusses
JavaScript intercession techniques that could be used to achieve this goal.

5.1 Approaches

Basically, we want to achieve implementing an observer that can be used to
watch a property of an object and that runs a custom handler when this occurs.
Listing 1.6 shows an example how this object observer could be used while in
the following different implementation approaches will be discussed.

var object = { myProp: null };

var o = new ObjectObserver(object , ’myProp ’, function(newV ,

oldV){

alert(’changed from ’ + oldV + ’ to ’ + newV);

});

object.foo = ’bar’; //=> ’changed from null to bar ’

o.unregister (); // no further changes should be recorded

Listing 1.6. Exemplary usage of an object observer

Object.watch Mozilla proposed a JavaScript extension object.watch(prop,

handler)which enables observing a property of an object [4]. Listing 1.7 shows
an example how the ObjectObserver could be implemented using this extension.
Unfortunately, other browsers than Mozilla Firefox doesn’t support this function
for which reason this is not suitable in our case.

Object.subclass(’ObjectObserver ’, {

initialize: function(obj , prop , fn){

obj.watch(prop , fn);



7

}

});

Listing 1.7. Implementing ObjectObserver with Object.watch

Polling for Changes Additionally, the object observer could poll frequently
for updates on the property of an object (see listing 1.8). Therefore, a function
checks regularly if the current value has changed and, if there are changes, calls
the handler. For implementation we used Prototype’s Function.prototype.delay

method that enables calling a function with a defined delay (so it is more conve-
nient way than calling JavaScript’s window.setTimeout). An obvious drawback of
this approach is the unavoidable delay between changing a property and being
notified about it.

Object.subclass(’ObjectObserver ’, {

initialize: function(obj , prop , fn){

var oldValue = obj[prop];

var check = function (){

if(oldValue !== obj[prop]){

fn(obj[prop], oldValue);

oldValue = obj[prop];

}

check.delay (1);

};

check();

}

});

Listing 1.8. Implementing ObjectObserver with Polling

Getter & Setter A quite unknown JavaScript feature are setter and getter
functions [5]: Those can be defined for any object and are dealing with getting
and setting the value of an object’s property. Listing 1.9 demonstrates how to
profit from this in the context of observing properties of an object. After having
stored the current value of the property in a local variable, a getter and setter
function are defined to simulate the old behavior of the property while calling
additionally our callback handler. The problem here is that existing getter and
setter could be overwritten.

Object.subclass(’ObjectObserver ’, {

initialize: function(obj , prop , fn){

var value = obj[prop];

obj.__defineSetter__(prop , function(v) {

fn(v, value);



8

value = v;

});

obj.__defineGetter__(prop , function () {

return value;

});

}

});

Listing 1.9. Implementing ObjectObserver with getter and setter

Wrapper As mentioned before, setter and getter of object properties can be
implemented through functions. Since JavaScript functions are objects and can
be stored into a variable, the object observer can just overwrite existing setter by
its own implementation that invokes the old setter. This way, the old behavior is
conserved but the callback handler can be called. Listing 1.10 shows an accordant
implementation and even provides an unregister function to restore the previous
state (this essential method has already been used in listing 1.6).

Object.subclass(’ObjectObserver ’, {

initialize: function(obj , prop , fn){

[...] // Define setter and getter , if not available

var setter = obj.__lookupSetter__(prop);

var wrappedSetter = function(val){

fn(val , obj[prop]);

setter.call(obj , val);

});

obj.__defineSetter__(prop , wrappedSetter);

this.unregister = function (){

obj.__defineSetter__(prop , setter);

}

}

});

Listing 1.10. Implementing ObjectObserver with wrapped getter and setter

5.2 Implementation Considerations

We now have a handful of techniques which allow to observe objects. Although
the approach using wrapped setters seems to be the most clean one, it has some
limits for arrays where setters are not called when accessing indexes (see listing
1.11). Additionally, in JavaScript arbitrary properties can be added (and deleted)
to an object at any time just by giving it a value what makes it difficult to track
those changes. To solve these issues, we implemented the object observer with
the following combination of techniques:



9

– Changed object properties: For each observed property, a getter and setter is
defined, if not available. Afterwards, the setter is wrapped to call the handler.

– Added and deleted object properties: For each observed object, a scheduled
function polls for changes in the list of properties. Handlers are (un)registered
if a property is identified as added or deleted.

– Added, changed and deleted array indexes: For each observed array, polling
functions are used as described before, but they are additionally looking for
changes on array indexes.

Because of this, our object observer interface supports registering rather on ob-
ject than on property level. Additionally, the ObjectObserver class is a singleton
to be able to manage registered callbacks and wrapped setters so that our final
interface is ObjectObserver.register(obj, fn) instead of new ObjectObserver(

obj, prop, fn)).

var a = [1];

a.__defineGetter__(’0’, function (){return ’foo’});

a[0]; // Getter does work #=> ’foo ’

a.__defineSetter__(’0’, function (){alert(’changed ’)});

a[0] = 1; // Setter does not work , no alert :(

Listing 1.11. Setters on array indexes have no effect

5.3 Self Referenced Browsing

One requirement of the object explorer is to be able to explore itself. With
live updates, this could lead to infinite recursion when exploring itself: While
the explorer is drawing its internal structure, this causes updates on it which
requires another redraw (and so on). To handle this, we implemented a switch
to detect when the explorer browses itself and just disables live updates for that
specific part.

Another candidate for infinite recursion could be having two reciprocal brows-
ing explorers. Against our expectations, this scenario couldn’t be constructed by
reason of Lively removes and re-adds morphs when bringing an inactive object
explorer to front. This way, all the expanded object explorer components are
collapsed when clicking on another object explorer which makes it impossible to
produce infinite recursion. Once the implementation in Lively has been changed,
this could be solved with a similar switch as for self referenced browsing.

6 Performance and Memory Analysis

We profiled our application to get an impression of how it affects the performance
and memory consumption. In our first benchmark (table 1 and lively.Tests.

ObjectExplorerBenchmark respectively) we analyzed the performance of our ob-
ject observer implementation: With a variable number of iterations, properties



10

of objects are set to different values see the impact of explicitly defined setter
(b) and of an installed object observer (c); (a) stands for the situation without
any explicit manipulation. Apparently, the usage of setters have little impact.
Since the object observer installs additional wrapper, invokes change handler
and polls frequently, using the object observer slows down setting properties to
a factor of three (what is still acceptable).

number of iterations

1.000 10.000 100.000 500.000

(a) ”usual way” 0 ms 6 ms 80 ms 500 ms

(b) getter & setter 0 ms 9 ms 100 ms 740 ms

(c) object observer 1 ms 15 ms 170 ms 1600 ms

Table 1. The impact of manipulating objects with setter and installing the
object observer

The other benchmark (table 2) concentrates on the performance and memory
impacts of the whole object explorer. In general, we compared the object explorer
in the example Lively application, with disabled and enabled live mode. We
took the time for one rotation of the example engine widget as performance
measure, for memory consumption Google Chrome’s task manager has been
used. As it can be seen in the table, the object explorer has high performance and
memory impacts when many properties/ objects are displayed (case(c) and (e)).
Especially when observing many submorph arrays (e), the system is extremely
slowed down because arrays have to be observed through polling. But the more
general use cases (b) and (d) reveals that the application is still very responsive.

Engine Rotation Memory Consumption

Disabled Enabled Factor Disabled Enabled Factor

(a) without object explorer 1,65 s 1,65 s 1,00 101,0 Mb 101,0 Mb 1,00

(b) standard view 1,70 s 1,85 s 1,08 112,0 Mb 113,8 Mb 1,01

(c) all functions view 2,00 s 3,05 s 1,52 134,6 Mb 140,5 Mb 1,04

(d) morph view 1,65 s 1,70 s 1,03 102,6 Mb 107,7 Mb 1,04

(e) morph view (expanded) 4,00 s 17,55 s 4,38 137,7 Mb 258,5 Mb 1,87

Table 2. Benchmarks for exploring example world (with different views and
enabled/ disabled live mode)



11

7 Summary & Outlook

Many functionalities that would require a certain metaobject protocol in other
programming languages are quite common in JavaScript. Metaprogramming (like
adding new functions to objects) is directly built into the language and is used by
developers regularly without even knowing it. Still there are limitations on what
is possible in JavaScript. One major flaw we found were restricted intercession
possibilities for arrays. It is also difficult to recognize new properties of objects
and client code is required to poll for changes. Additionally, the lack of consis-
tent cross-browser support is quite challenging, a challenge that ”traditional”
JavaScript web developers also have to face. While testing our implementations
we recognized that the performance of the various JavaScript implementations
vary greatly (even between Safari and Google Chrome).

Despite of the challenges mentioned above, we conclude that our object ex-
plorer implementation fulfills the requirements from the introduction. For future
work, the following topics should be considered: First the object observer should
be aware of the fact that wrapped properties may be wrapped by a different
meta program again. The current implementation would not be able to uninstall
the wrapper in that case. Fortunately there are existing solutions out there [1].
Another performance improvement would result by drawing the svg elements for
the tree view nodes directly rather then using Lively morphs. A large number
of morphs drops the performance significantly, especially in case of moving the
object explorer around.



12

8 Appendix

8.1 HowTo Install/ Setup

When deploying to an already existing Lively project, the files mentioned in table
3 should be placed in the Lively source folder. In addition the files mentioned
in table 4 should replace the original Lively files in the source folder. To start
Lively with object explorer enabled simply load objectExplorer.xhtml in your
browser (latest Google Chrome or Safari preferred).

File Function

objectExplorer.xhtml The xhtml (with test) links to all js files

ObjectExplorer/ObjectExplorer.js The main application class

ObjectExplorer/ObjectExplorerTreeNode.js A tree node representing an object to explore

ObjectExplorer/ObjectObserver.js An Observer that registers callbacks

ObjectExplorer/Tree.js Logic for addind nodes to a tree

ObjectExplorer/TreeMorph.js A morph that displays a tree

ObjectExplorer/Utils.js Some functions we needed but did not fit anywhere else

ObjectExplorer/collapsed.png The icon for collapsed treenode

ObjectExplorer/expanded.png The icon for expanded treenode

ObjectExplorer/Tests/ObjectExplorerTest.js Tests for observer

ObjectExplorer/Tests/TreeTest.js Tests for treenode implementation

Table 3. Files for Object Explorer

File Line Changes

Core.js #2790 added ’explore’ to context menu in order to start Object Explorer

Core.js #4359 added ’explore’ to morph menu

Table 4. Changed Files



13

References

1. John Brant, Brian Foote, Ralph E. Johnson, and Donald Roberts. Wrappers to the
rescue. In Proceedings ECOOP 98, volume 1445 of LNCS, pages 396–417. Springer-
Verlag, 1998.

2. Douglas Crockford. Prototypal inheritance in javascript. http://javascript.

crockford.com/prototypal.html, 2006-2008.
3. Sun Labs and Hasso-Plattner-Institute. Lively kernel project page. http://www.

lively-kernel.org, 2010.
4. Mozilla. Core javascript 1.5 reference - object.watch. https://developer.mozilla.

org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object/watch, 2008.
5. Allen Wirfs-Brock. Proposed ECMAScript 3.1 Static Object Functions: Use

Cases and Rationale. Microsoft Corporation, 2008. http://wiki.ecmascript.

org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_draft&cache=

cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf.

http://javascript.crockford.com/prototypal.html
http://javascript.crockford.com/prototypal.html
http://www.lively-kernel.org
http://www.lively-kernel.org
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object/watch
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object/watch
http://wiki.ecmascript.org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_draft&cache=cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf
http://wiki.ecmascript.org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_draft&cache=cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf
http://wiki.ecmascript.org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_draft&cache=cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf

	Advanced Object Explorer for the Lively Kernel
	Alexander Lüders, Richard Metzler, Kai Schlichting

